
Ph.D. defense
Perpignan, December 10th, 2014

Synthesis of certified programs in fixed-point
arithmetic, and its application to

linear algebra basic blocks

Mohamed Amine Najahi

Advisors: Matthieu Martel and Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506

CNRS, LIRMM, UMR 5506

D
A

LI

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 1/1

Context

The embedded systems market is growing

Around 30% of an airplane’s cost, around 40% of a car’s cost

radar processing velocity regulators
audio signal

processing

signal and image

processing

Embedded systems are often dedicated to computational tasks

Embedded systems face multiple constraints

Ï efficiency
Ï cost

Ï limits on hardware resources
Ï limits on energy consumption

How to implement these computational tasks in embedded systems?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/1

Context

The embedded systems market is growing

Around 30% of an airplane’s cost, around 40% of a car’s cost

radar processing velocity regulators
audio signal

processing

signal and image

processing

Embedded systems are often dedicated to computational tasks

Embedded systems face multiple constraints

Ï efficiency
Ï cost

Ï limits on hardware resources
Ï limits on energy consumption

How to implement these computational tasks in embedded systems?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/1

Context

The embedded systems market is growing

Around 30% of an airplane’s cost, around 40% of a car’s cost

radar processing velocity regulators
audio signal

processing

signal and image

processing

Embedded systems are often dedicated to computational tasks

Embedded systems face multiple constraints

Ï efficiency
Ï cost

Ï limits on hardware resources
Ï limits on energy consumption

How to implement these computational tasks in embedded systems?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/1

Context

The embedded systems market is growing

Around 30% of an airplane’s cost, around 40% of a car’s cost

radar processing velocity regulators
audio signal

processing

signal and image

processing

Embedded systems are often dedicated to computational tasks

Embedded systems face multiple constraints

Ï efficiency
Ï cost

Ï limits on hardware resources
Ï limits on energy consumption

How to implement these computational tasks in embedded systems?
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/1

How to implement computational tasks?

Floating-point computations

© Easy and fast to implement

© Easily portable [?]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations

§ Tedious and time consuming to implement

• > 50% of design time [?]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/1

How to implement computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [?]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [?]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/1

How to implement computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [?]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [?]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/1

How to implement computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [?]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [?]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/1

How to implement computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [?]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [?]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/1

State of the art on how to achieve this objective?
To make fixed-point programming easy and fast

Ï develop automated code synthesis tools

To make fixed-point programming safe numerically
Ï the tools must generate bounds on rounding errors

float fix

Float-to-fix conversion

Works for a generic input

IDFix [?], GUSTO [?], ...

Based on floating-point simulations

Ï no numeric certification
Ï do not scale

IP blockP(x)= x2 −x +3

Range of
input variables
x ∈ [−5,1.5]

fix

Fixed-point code synthesis for IP blocks

IP blocks: polynomials [?],
filters [?], ...

Based on analytic techniques
Ï interval and affine

arithmetics [?], [?],
differentiation [?], ...

Ï fast and scalable

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/1

State of the art on how to achieve this objective?
To make fixed-point programming easy and fast

Ï develop automated code synthesis tools

To make fixed-point programming safe numerically
Ï the tools must generate bounds on rounding errors

float fix

Float-to-fix conversion

Works for a generic input

IDFix [?], GUSTO [?], ...

Based on floating-point simulations

Ï no numeric certification
Ï do not scale

IP blockP(x)= x2 −x +3

Range of
input variables
x ∈ [−5,1.5]

fix

Fixed-point code synthesis for IP blocks

IP blocks: polynomials [?],
filters [?], ...

Based on analytic techniques
Ï interval and affine

arithmetics [?], [?],
differentiation [?], ...

Ï fast and scalable

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/1

State of the art on how to achieve this objective?
To make fixed-point programming easy and fast

Ï develop automated code synthesis tools

To make fixed-point programming safe numerically
Ï the tools must generate bounds on rounding errors

float fix

Float-to-fix conversion

Works for a generic input

IDFix [?], GUSTO [?], ...

Based on floating-point simulations

Ï no numeric certification
Ï do not scale

IP block

P(x)= x2 −x +3

Range of
input variables

x ∈ [−5,1.5]

fix

Fixed-point code synthesis for IP blocks

IP blocks: polynomials [?],
filters [?], ...

Based on analytic techniques
Ï interval and affine

arithmetics [?], [?],
differentiation [?], ...

Ï fast and scalable

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/1

State of the art on how to achieve this objective?
To make fixed-point programming easy and fast

Ï develop automated code synthesis tools

To make fixed-point programming safe numerically
Ï the tools must generate bounds on rounding errors

float fix

Float-to-fix conversion

Works for a generic input

IDFix [?], GUSTO [?], ...

Based on floating-point simulations

Ï no numeric certification
Ï do not scale

IP block

P(x)= x2 −x +3

Range of
input variables

x ∈ [−5,1.5]

fix

Fixed-point code synthesis for IP blocks

IP blocks: polynomials [?],
filters [?], ...

Based on analytic techniques
Ï interval and affine

arithmetics [?], [?],
differentiation [?], ...

Ï fast and scalable

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/1

The DEFIS approach

DEFIS (ANR, 2011-)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [?]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [?]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 5/1

The DEFIS approach

DEFIS (ANR, 2011-)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [?]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [?]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 5/1

The DEFIS approach

DEFIS (ANR, 2011-)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [?]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [?]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 5/1

The DEFIS approach

DEFIS (ANR, 2011-)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [?]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [?]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 5/1

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model
• instruction selection

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 6/1

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model
• instruction selection

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

Arithmetic
model

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 6/1

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model
• instruction selection

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

Arithmetic
model

F
ixed-point synthesis

to
ol

CGPE

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 6/1

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model
• instruction selection

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

Arithmetic
model

F
ixed-point synthesis

to
ol

CGPE

Algorithmic level tool

FPLA

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 6/1

Outline of the talk

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 7/1

An arithmetic model for fixed-point code synthesis

Outline of the talk

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 8/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

X7 X6 X5 X4 X3 X2 X1 X0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

X7 X6 X5 X4 X3 X2 X1 X0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

1 0 0 1 1 0 0 0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

1 0 0 1 1 0 0 0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224

3.5

a1 Q1.7 192

1.5

x Q3.5 [16,208]

[0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

1. Pick an evaluation scheme

2. Determine the range and fixed-point formats
of intermediate variables

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

1. Pick an evaluation scheme

2. Determine the range and fixed-point formats
of intermediate variables

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

1. Pick an evaluation scheme

2. Determine the range and fixed-point formats
of intermediate variables

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

1. Pick an evaluation scheme

2. Determine the range and fixed-point formats
of intermediate variables

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Background on fixed-point numbers and formats

How to compute with fixed-point numbers?
Toy example: degree-1 polynomial evaluation with 8 bit numbers

P(x)= a0 + (x ·a1)

+

a0 ×

x a1

Q4.4

Q3.5 Q1.7

Q2.6

+

À

a0

×

x a1

Q4.4

Q4.4

Q2.6

Format Int. repr. Decimal value

a0 Q2.6 224 3.5

a1 Q1.7 192 1.5

x Q3.5 [16,208] [0.5,6.5]

u = (x ·a1) Q4.4 [12,156] [0.75,9.75]

v = (a0 À 2) Q4.4 56 3.5

w = (v +u) Q4.4 [68,212] [4.25,13.25]

uint8_t pol(uint8_t x /*Q3.5*/)
{

uint8_t u = mul (x , 224);
uint8_t v = 224 >> 2;
uint8_t w = v + u;
return w; /*Q4.4*/

}

Floating-point version

float pol(float x)
{

return 3.5+1.5*x;
}

Even for small problems, this process is tedious: How to automate it?
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v

the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v

a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v
the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v
a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)

¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v
the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v
a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v
the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v
a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point addition
The two variables v1 and v2 must be aligned: in the same fixed-point format Qi .f

1. If Val(v1)+Val(v2)⊆Range(Qi .f), overflow cannot occur

i f

i f

• • • • • • • •

• • • • • • • •+
=

i f

• • • • • • • •

 +

. .

Val(v)= Val(v1)+Val(v2)
Err(v)= Err(v1)+Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

2. If Range(Qi .f)⊂Val(v1)+Val(v2)⊂Range(Qi +1.f −1), overflow may occur

i f

i +1 f −1

i f

i +1 f −1

• • • • • • • •

• • • • • • • •

• • • • • • • •+

• • • • • • • •

i +1 f −1

• • • • • • • •=

 +

À

.

À

.

Val(v)= Val(v ′1)+Val(v ′2)
Err(v)= Err(v ′1)+Err(v ′2)

Val(v1)
Err(v1)

Val(v ′1)
Err(v ′1)

Val(v2)
Err(v2)

Val(v ′2)
Err(v ′2)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point addition
The two variables v1 and v2 must be aligned: in the same fixed-point format Qi .f

1. If Val(v1)+Val(v2)⊆Range(Qi .f), overflow cannot occur

i f

i f

• • • • • • • •

• • • • • • • •+
=

i f

• • • • • • • •

 +

. .

Val(v)= Val(v1)+Val(v2)
Err(v)= Err(v1)+Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

2. If Range(Qi .f)⊂Val(v1)+Val(v2)⊂Range(Qi +1.f −1), overflow may occur

i f

i +1 f −1

i f

i +1 f −1

• • • • • • • •

• • • • • • • •

• • • • • • • •+

• • • • • • • •

i +1 f −1

• • • • • • • •=

 +

À

.

À

.

Val(v)= Val(v ′1)+Val(v ′2)
Err(v)= Err(v ′1)+Err(v ′2)

Val(v1)
Err(v1)

Val(v ′1)
Err(v ′1)

Val(v2)
Err(v2)

Val(v ′2)
Err(v ′2)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point addition
The two variables v1 and v2 must be aligned: in the same fixed-point format Qi .f

1. If Val(v1)+Val(v2)⊆Range(Qi .f), overflow cannot occur

i f

i f

• • • • • • • •

• • • • • • • •+
=

i f

• • • • • • • •

 +

. .

Val(v)= Val(v1)+Val(v2)
Err(v)= Err(v1)+Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

2. If Range(Qi .f)⊂Val(v1)+Val(v2)⊂Range(Qi +1.f −1), overflow may occur

i f

i +1 f −1

i f

i +1 f −1

• • • • • • • •

• • • • • • • •

• • • • • • • •+

• • • • • • • •

i +1 f −1

• • • • • • • •=

 +

À

.

À

.

Val(v)= Val(v ′1)+Val(v ′2)
Err(v)= Err(v ′1)+Err(v ′2)

Val(v1)
Err(v1)

Val(v ′1)
Err(v ′1)

Val(v2)
Err(v2)

Val(v ′2)
Err(v ′2)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point addition
The two variables v1 and v2 must be aligned: in the same fixed-point format Qi .f

1. If Val(v1)+Val(v2)⊆Range(Qi .f), overflow cannot occur

i f

i f

• • • • • • • •

• • • • • • • •+
=

i f

• • • • • • • •

 +

. .

Val(v)= Val(v1)+Val(v2)
Err(v)= Err(v1)+Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

2. If Range(Qi .f)⊂Val(v1)+Val(v2)⊂Range(Qi +1.f −1), overflow may occur

i f i +1 f −1

i f i +1 f −1

• • • • • • • • • • • • • • • •

• • • • • • • •+ • • • • • • • •

i +1 f −1

• • • • • • • •=

 +

À

.

À

.

Val(v)= Val(v ′1)+Val(v ′2)
Err(v)= Err(v ′1)+Err(v ′2)

Val(v1)
Err(v1)

Val(v ′1)
Err(v ′1)

Val(v2)
Err(v2)

Val(v ′2)
Err(v ′2)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point addition
The two variables v1 and v2 must be aligned: in the same fixed-point format Qi .f

1. If Val(v1)+Val(v2)⊆Range(Qi .f), overflow cannot occur

i f

i f

• • • • • • • •

• • • • • • • •+
=

i f

• • • • • • • •

 +

. .

Val(v)= Val(v1)+Val(v2)
Err(v)= Err(v1)+Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

2. If Range(Qi .f)⊂Val(v1)+Val(v2)⊂Range(Qi +1.f −1), overflow may occur

i f i +1 f −1

i f i +1 f −1

• • • • • • • • • • • • • • • •

• • • • • • • •+ • • • • • • • •

i +1 f −1

• • • • • • • •=

 +

À

.

À

.

Val(v)= Val(v ′1)+Val(v ′2)
Err(v)= Err(v ′1)+Err(v ′2)

Val(v1)
Err(v1)

Val(v ′1)
Err(v ′1)

Val(v2)
Err(v2)

Val(v ′2)
Err(v ′2)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2 f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 13/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2 f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 13/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2

f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]

This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 13/1

An arithmetic model for fixed-point code synthesis Range and error analysis by propagating intervals

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2

f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 13/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2

But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •
ir fr

• • • • • • • • • • • • • • • •

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2

But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •

i1 + f2 fr

• • • • • • • • • • • • • • • •
ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2i2+f1 ,2i2+f1

]

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2
But, doubling the word-length is costly

How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •

i1 + f2 fr

• • • • • • • • • • • • • • • •

ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2fr ,2fr

]

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2
But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •

ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2fr ,2fr

]
© sharper bound
§ risk of overflow at run-time

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2
But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •

ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2fr ,2fr

]
© sharper bound
§ risk of overflow at run-time

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr)= [−2ir −1 ,2ir −1 −2fr].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr]∪ [2−fr ,2ir−1 −2fr]

Additional code to check for run-time overflows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr)= [−2ir −1 ,2ir −1 −2fr].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr]∪ [2−fr ,2ir−1 −2fr]

int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{

int64_t t1 = ((int64_t)V1) << eta;
int64_t V = t1 / V2;
CGPE_ASSERT
CGPE_ASSERT
return (int32_t) V;

}

Additional code to check for run-time overflows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr)= [−2ir −1 ,2ir −1 −2fr].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr]∪ [2−fr ,2ir−1 −2fr]

int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{

int64_t t1 = ((int64_t)V1) << eta;
int64_t V = t1 / V2;
CGPE_ASSERT((((V & 0xFFFFFFFF80000000ll) == 0xFFFFFFFF80000000ll)

|| ((V & 0xFFFFFFFF80000000ll) == 0)));
return (int32_t) V;

}

Additional code to check for run-time overflows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An arithmetic model for fixed-point code synthesis Enhancing the model with division

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/1

An implementation of the arithmetic model: the CGPE tool

Outline of the talk

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 17/1

An implementation of the arithmetic model: the CGPE tool Background on CGPE

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [?]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 18/1

An implementation of the arithmetic model: the CGPE tool Background on CGPE

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [?]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 18/1

An implementation of the arithmetic model: the CGPE tool Background on CGPE

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [?]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 18/1

An implementation of the arithmetic model: the CGPE tool Background on CGPE

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [?]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 18/1

An implementation of the arithmetic model: the CGPE tool Case study using CGPE: IIR linear filter

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90

A
m
p
li
tu
d
e

Time

Original signal
Filtered in fixed-point using S1

Filtered in binary64

-60

-50

-40

-30

-20

-10

0

10 20 30 40 50 60 70 80

-16.76

lo
g
2
(E

r
r
)

Time

Certified error bound
Error of the fixed-point impl. using S1

Error of the binary32 impl.
Error of the binary64 impl.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/1

An implementation of the arithmetic model: the CGPE tool Case study using CGPE: IIR linear filter

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90

A
m
p
li
tu
d
e

Time

Original signal
Filtered in fixed-point using S1

Filtered in binary64

-60

-50

-40

-30

-20

-10

0

10 20 30 40 50 60 70 80

-16.76

lo
g
2
(E

r
r
)

Time

Certified error bound
Error of the fixed-point impl. using S1

Error of the binary32 impl.
Error of the binary64 impl.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/1

An implementation of the arithmetic model: the CGPE tool Case study using CGPE: IIR linear filter

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90

A
m
p
li
tu
d
e

Time

Original signal
Filtered in fixed-point using S1

Filtered in binary64

-60

-50

-40

-30

-20

-10

0

10 20 30 40 50 60 70 80

-16.76

lo
g
2
(E

r
r
)

Time

Certified error bound
Error of the fixed-point impl. using S1

Error of the binary32 impl.
Error of the binary64 impl.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/1

An implementation of the arithmetic model: the CGPE tool Case study using CGPE: IIR linear filter

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

int32_t filter(int32_t u0 /*Q5.27*/ , int32_t u1 /*Q5.27*/ ,
int32_t u2 /*Q5.27*/ , int32_t u3 /*Q5.27*/ ,
int32_t y1 /*Q6.26*/ , int32_t y2 /*Q6.26*/ ,
int32_t y3 /*Q6.26*/)

{ //Formats Err
int32_t r0 = mul(0x4a5cdb26 , y1); //Q8.24 [-2^{-24},0]
int32_t r1 = mul(0xa6eb5908 , y2); //Q7.25 [-2^{-25},0]
int32_t r2 = mul(0x4688a637 , y3); //Q5.27 [-2^{-27},0]
int32_t r3 = mul(0x65718e3b , u0); //Q2.30 [-2^{-30},0]
int32_t r4 = mul(0x65718e3b , u3); //Q2.30 [-2^{-30},0]
int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
int32_t r7 = mul(0x4c152aad , u1); //Q4.28 [-2^{-28},0]
int32_t r8 = mul(0x4c152aad , u2); //Q4.28 [-2^{-28},0]
int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]
return r17;

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/1

An implementation of the arithmetic model: the CGPE tool Case study using CGPE: IIR linear filter

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

int32_t filter(int32_t u0 /*Q5.27*/ , int32_t u1 /*Q5.27*/ ,
int32_t u2 /*Q5.27*/ , int32_t u3 /*Q5.27*/ ,
int32_t y1 /*Q6.26*/ , int32_t y2 /*Q6.26*/ ,
int32_t y3 /*Q6.26*/)

{ //Formats Err
int32_t r0 = mul(0x4a5cdb26 , y1); //Q8.24 [-2^{-24},0]
int32_t r1 = mul(0xa6eb5908 , y2); //Q7.25 [-2^{-25},0]
int32_t r2 = mul(0x4688a637 , y3); //Q5.27 [-2^{-27},0]
int32_t r3 = mul(0x65718e3b , u0); //Q2.30 [-2^{-30},0]
int32_t r4 = mul(0x65718e3b , u3); //Q2.30 [-2^{-30},0]
int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
int32_t r7 = mul(0x4c152aad , u1); //Q4.28 [-2^{-28},0]
int32_t r8 = mul(0x4c152aad , u2); //Q4.28 [-2^{-28},0]
int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]
return r17;

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

Instruction selection to handle advanced instructions

It is a well known problem in compilation proven to be NP-complete on DAGs

Usually solved using a tiling algorithm:
Ï input:

• a DAG representing an arithmetic expression,

• a set of tiles, with a cost for each,

• a function that associates a cost to a DAG.

Ï output: a set of covering tiles that minimize the cost function.

Implementation in CGPE
XML architecture description file that contains for each instruction:

Ï its name, its type (signed or unsigned), its latency (# cycles),

Ï a description of the pattern it matches,

Ï a C macro to emulate it in software,

Ï and a piece of Gappa script to compute the error entailed by its evaluation in
fixed-point arithmetic.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 20/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

Instruction selection to handle advanced instructions

It is a well known problem in compilation proven to be NP-complete on DAGs

Usually solved using a tiling algorithm:
Ï input:

• a DAG representing an arithmetic expression,

• a set of tiles, with a cost for each,

• a function that associates a cost to a DAG.

Ï output: a set of covering tiles that minimize the cost function.

Implementation in CGPE
XML architecture description file that contains for each instruction:

Ï its name, its type (signed or unsigned), its latency (# cycles),

Ï a description of the pattern it matches,

Ï a C macro to emulate it in software,

Ï and a piece of Gappa script to compute the error entailed by its evaluation in
fixed-point arithmetic.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 20/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

6

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

6

73

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

6

73

8 BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

6

73

87 BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

6

73

87

8

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

3

6

3

7

8

TopDownSelect()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

¿

×

a2 ×

x x

1

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

The NOLTIS-like tiling algorithm

Near-Optimal Instruction Selection algorithm [?]

1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 ·x)+

((
a2 · (x ·x))¿ 1

))
?

In our case, only the first step of NOLTIS is valuable.

NOLTIS algorithm mainly relies on the evaluation of a cost function. We have
implemented three different cost functions:

Ï number of operator (regardless common subexpressions)
Ï evaluation latency on unbounded parallelism
Ï evaluation accuracy, computed using the Gappa script of each instruction

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

Impact on the number of instructions

 25

 30

 35

 40

cos(x) sin(x) log2(1+x)

A
v
e
ra

g
e

 n
u
m

b
e
r

o
f

in
s
tr

u
c
ti
o
n

s

no advanced instruction

add-add

mulacc

shift-add left

shift-add right

all advanced instructions

Figure: Average number of instructions in 50 synthesized
codes, for the evaluation of polynomials of degree 5 up to
12 for various elementary functions.

Remark 1: average reduction
of 8.7 % up to 13.75 %

Remark 2: interest of ST231
shift-and-add with left shift for
sin(x) implementation
 reduction of 8.7 %

Remark 3: interest of
shift-and-add with right shift
for cos(x) and log2(1+x)
implementation
 reduction of 12.8 % and
13.75 %, respectively

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 22/1

An implementation of the arithmetic model: the CGPE tool Enhancing CGPE with instruction selection

Impact on the accuracy of some functions

f (x) I d log2 (ε)

not optimized optimized

exp(x)−1 [−0.25,0.25] 7 −26.98 −27.34

exp(x) [0,1] 7 −13.94 −14.90

sin(x) [−0.5,0.5] 9 −18.95 −19.91

cos(x) [−0.5,0.25] 5 −27.01 −27.26

tan(x) [0.25,0.5] 9 −18.81 −19.64

log2(1+x)/x [2−23,1] 7 −13.94 −14.89p
1+x [2−23,1] 7 −13.94 −14.90

Table: Impact of the accuracy based selection step on the certified accuracy of the generated
code for various functions.

Remark 1: with a mulacc that computes (a * b) + (c >> n) with n ∈ {1, · · · ,31}
with one final rounding

Remark 2: more accurate results for all the cases, almost up to 1 bit of accuracy
for exp,sin, log2 and

p
1+x

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 23/1

Fixed-point code synthesis for linear algebra basic blocks

Outline of the talk

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 24/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 26/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 26/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Matrix multiplication

Inputs
Two matrices A and B of fixed-point variables

A ∈ Fixn×n and B ∈ Fixn×n

A bound C1 on the roundoff error

A bound C2 on the code size

Output
Fixed-point code (C, VHDL, ...) that evaluates the product

C′ =A′ ·B′, where A′ ∈A and B′ ∈B

that satisfy both C1 and C2

Accuracy certificate (verifiable by a formal proof checker)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 27/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Matrix multiplication

Inputs
Two matrices A and B of fixed-point variables

A ∈ Fixn×n and B ∈ Fixn×n

A bound C1 on the roundoff error

A bound C2 on the code size

Output
Fixed-point code (C, VHDL, ...) that evaluates the product

C′ =A′ ·B′, where A′ ∈A and B′ ∈B

that satisfy both C1 and C2

Accuracy certificate (verifiable by a formal proof checker)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 27/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Straightforward algorithms

Accurate algorithm
Main idea: a dot product code for
each coefficient of the resulting
matrix

Accurate algorithm
Inputs:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

Outputs:
C code to compute the product A ·B
n ·n accuracy certificates

Steps:
1: for 1< i ≤ n do
2: for 1< j ≤ n do
3: DPSynthesis(Ai ,:,B:,j)
4: end for
5: end for
6: Check C1 and C2

Compact algorithm
Main idea: a unique dot product
code for all the coefficient of the
resulting matrix

Compact algorithm
Inputs:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

Outputs:
C code to compute the product A ·B
1 accuracy certificate

Steps:
1: U =A1,:∪A2,:∪·· ·∪An,:, with U ∈ Fix1×n

2: V =B:,1 ∪B:,2 ∪·· ·∪B:,n , with V ∈ Fixn×1

3: DPSynthesis(U ,V)
4: Check C1 and C2

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 28/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Straightforward algorithms

Accurate algorithm
Main idea: a dot product code for
each coefficient of the resulting
matrix

Accurate algorithm
Inputs:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

Outputs:
C code to compute the product A ·B
n ·n accuracy certificates

Steps:
1: for 1< i ≤ n do
2: for 1< j ≤ n do
3: DPSynthesis(Ai ,:,B:,j)
4: end for
5: end for
6: Check C1 and C2

Compact algorithm
Main idea: a unique dot product
code for all the coefficient of the
resulting matrix

Compact algorithm
Inputs:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

Outputs:
C code to compute the product A ·B
1 accuracy certificate

Steps:
1: U =A1,:∪A2,:∪·· ·∪An,:, with U ∈ Fix1×n

2: V =B:,1 ∪B:,2 ∪·· ·∪B:,n , with V ∈ Fixn×1

3: DPSynthesis(U ,V)
4: Check C1 and C2

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 28/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Example of a multiplication of 2×2 matrices

We consider code synthesis for the multiplication of matrices A′ ∈A and B′ ∈B:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Coefficient A1,1 A1,2 A2,1 A2,2 B1,1 B1,2 B2,1 B2,2

Fixed-point format Q11.21 Q12.20 Q2.30 Q2.30 Q11.21 Q3.29 Q2.30 Q5.27

Accurate algorithm
Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCode1,1 DPCode1,2 DPCode2,1 DPCode2,2

Output format Q26,6 Q18,14 Q15,17 Q7,25

Certified error ≈ 2−5 ≈ 2−14 ≈ 2−16 ≈ 2−24

Maximum error ≈ 2−5

Average error ≈ 2−7

Compact algorithm
Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCodeU ,V

Output format Q26,6

Certified error ≈ 2−5

Maximum error ≈ 2−5

Average error ≈ 2−5

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 29/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Example of a multiplication of 2×2 matrices

We consider code synthesis for the multiplication of matrices A′ ∈A and B′ ∈B:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Coefficient A1,1 A1,2 A2,1 A2,2 B1,1 B1,2 B2,1 B2,2

Fixed-point format Q11.21 Q12.20 Q2.30 Q2.30 Q11.21 Q3.29 Q2.30 Q5.27

Accurate algorithm
Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCode1,1 DPCode1,2 DPCode2,1 DPCode2,2

Output format Q26,6 Q18,14 Q15,17 Q7,25

Certified error ≈ 2−5 ≈ 2−14 ≈ 2−16 ≈ 2−24

Maximum error ≈ 2−5

Average error ≈ 2−7

Compact algorithm
Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCodeU ,V

Output format Q26,6

Certified error ≈ 2−5

Maximum error ≈ 2−5

Average error ≈ 2−5

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 29/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Trade-off algorithms

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0:

A1:

A2:

A3:

A4:

Accurate algorithm:

(25 dot-product codes)

B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



B:0

B:1

B:2

B:3

B:4

Number of possible trade-off algorithms

Given by B(n)2 with B(n) the nth Bell number

n 5 6 10 16 25 64 · · ·
B(n)2 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·

How to find in reasonable time a partition that reduces cost size without harming the accuracy?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 30/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Trade-off algorithms

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0:

A1:

A2:

A3:

A4:

Compact algorithm:

(1 dot-product code)

B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



B:0

B:1

B:2

B:3

B:4

Number of possible trade-off algorithms

Given by B(n)2 with B(n) the nth Bell number

n 5 6 10 16 25 64 · · ·
B(n)2 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·

How to find in reasonable time a partition that reduces cost size without harming the accuracy?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 30/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Trade-off algorithms

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0:

A1:

A2:

A3:

A4:

Trade-off algorithm:

(9 dot-product codes)

B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



B:0

B:1

B:2

B:3

B:4

Number of possible trade-off algorithms

Given by B(n)2 with B(n) the nth Bell number

n 5 6 10 16 25 64 · · ·
B(n)2 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·

How to find in reasonable time a partition that reduces cost size without harming the accuracy?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 30/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Trade-off algorithms

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Number of possible trade-off algorithms

Given by B(n)2 with B(n) the nth Bell number

n 5 6 10 16 25 64 · · ·
B(n)2 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·

How to find in reasonable time a partition that reduces cost size without harming the accuracy?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 30/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Trade-off algorithms

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Number of possible trade-off algorithms

Given by B(n)2 with B(n) the nth Bell number

n 5 6 10 16 25 64 · · ·
B(n)2 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·

How to find in reasonable time a partition that reduces cost size without harming the accuracy?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 30/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Distances between fixed-point variables

The Hausdorff distance

dH : Fix ×Fix →R+

dH (I1, I2)=max
{∣∣∣I1 − I2

∣∣∣ ,
∣∣I1 − I2

∣∣}

Range(x)
Increase sustained by Range(x)

Range(x ∪y)

Increase sustained by Range(y) dH (x ,y)
Range(y)

Fixed-point distance

dF : Fix ×Fix →N

dF (I1, I2)=
∣∣IntegerPart(I1)− IntegerPart(I2)

∣∣

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 31/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Distances between fixed-point variables

The Hausdorff distance

dH : Fix ×Fix →R+

dH (I1, I2)=max
{∣∣∣I1 − I2

∣∣∣ ,
∣∣I1 − I2

∣∣}

Range(x)
Increase sustained by Range(x)

Range(x ∪y)

Increase sustained by Range(y) dH (x ,y)
Range(y)

Fixed-point distance

dF : Fix ×Fix →N

dF (I1, I2)=
∣∣IntegerPart(I1)− IntegerPart(I2)

∣∣

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 31/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Closest pair algorithm
Input:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,An−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj)
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

Accurate algorithm

25 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 32/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Closest pair algorithm
Input:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,An−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj)
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

20 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 32/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Closest pair algorithm
Input:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,An−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj)
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

16 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 32/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Closest pair algorithm
Input:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,An−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj)
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

12 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 32/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Closest pair algorithm
Input:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,An−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj)
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

9 DPcodes

C1 is no longer satisfied

 Revert the last merging step and
check if C2 is satisfied

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 32/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Closest pair algorithm
Input:

Two matrices A ∈ Fixn×n and B ∈ Fixn×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,An−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj)
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

12 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 32/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Benchmark matrices

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Edges

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Center

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Random

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Rows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 33/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Efficiency of the distance-based heuristic: 6×6 matrix product

Generating the 41209 different algorithms: 2h15 per benchmark

Running our algorithm: 10 seconds per benchmark

0

0.005

0.01

0.015

0.02

0.025

1 5 10 15 20 25 30 36

A
ve

ra
ge

er
ro

r

Number of dot-products used

Average error of all possible algorithms
Dynamic closest pair algorithm run result

0

0.001

0.002

0.003

0.004

0.005

1 5 10 15 20 25 30 36

A
ve

ra
ge

er
ro

r

Number of dot-products used

Average error of all possible algorithms
Dynamic closest pair algorithm run result

Random benchmark Center benchmark

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 34/1

Fixed-point code synthesis for linear algebra basic blocks Matrix multiplication: accuracy versus size trade-offs

Impact of the metric on the trade-off strategy

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

N
u
m

b
e
r

o
f
d
o
t-

p
ro

d
u
c
t
c
o
d
e
s

Average error bound

Center benchmark

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

 0

 100

 200

 300

 400

 500

 600

2
-14

2
-13

2
-12

2
-11

2
-10

2
-9

N
u
m

b
e
r

o
f
d
o
t-

p
ro

d
u
c
t
c
o
d
e
s

Average error bound

Edges benchmark

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

 0

 100

 200

 300

 400

 500

 600

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

2
-10

N
u
m

b
e
r

o
f
d
o
t-

p
ro

d
u
c
t
c
o
d
e
s

Average error bound

Rows benchmark

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

 0

 100

 200

 300

 400

 500

 600

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

N
u
m

b
e
r

o
f
d
o
t-

p
ro

d
u
c
t
c
o
d
e
s

Average error bound

Random benchmark

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 35/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 36/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

bi ,j =


p

ci ,i if i = j

ci ,j

bj ,j
if i 6= j

with ci ,j =mi ,j −
j−1∑
k=0

bi ,k ·bj ,k

Triangular matrix inversion

ni ,j =


1

bi ,i
if i = j

−ci ,j

bi ,i
if i 6= j

where ci ,j =
i−1∑
k=j

bi ,k ·nk ,j

Dependencies of the coefficient b4,2 in the decomposition and inversion of a 6×6 matrix.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 37/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

bi ,j =


p

ci ,i if i = j

ci ,j

bj ,j
if i 6= j

with ci ,j =mi ,j −
j−1∑
k=0

bi ,k ·bj ,k

Triangular matrix inversion

ni ,j =


1

bi ,i
if i = j

−ci ,j

bi ,i
if i 6= j

where ci ,j =
i−1∑
k=j

bi ,k ·nk ,j

Dependencies of the coefficient b4,2 in the decomposition and inversion of a 6×6 matrix.
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 37/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

FPLA (Fixed-Point Linear Algebra)

User options

Coefficients
and vari-

ables

Problem dispatcher

Dot-product solver

Matrix multipli-
cation solver

Triangular matrix
inversion solver

Cholesky decom-
position solver

Codes

Certificates

FP
LA

-C
G

P
E

interface

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 38/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

Impact of the output format of division
Different functions to set the output format of division

1. f1(i1, i2)= t ,

2. f2(i1, i2)=min(i1, i2)+ t ,

3. f3(i1, i2)=max(i1, i2)+ t ,

4. f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+ t ,

i1 and i2: integer parts of the numerator and denominator and t ∈ [−2,8]

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

-2 0 2 4 6 8

M
ax

im
u

m
 e

rr
o

r

User defined parameter t

f1
f2
f3
f4

(a) Cholesky 5×5.

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

-2 0 2 4 6 8

M
ax

im
u

m
 e

rr
o

r

User defined parameter t

f1
f2
f3
f4

(b) Triangular 10×10.

Maximum errors with various functions used to determine the output formats of division.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 39/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

How fast is generating triangular matrix inversion codes?

We use f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+1 to set the output format of division

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40

T
im

e
in

se
co

nd
s

Matrix size

Generation time for the inversion of triangular matrices of size 4 to 40.
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 40/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

How fast is generating triangular matrix inversion codes?

We use f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+1 to set the output format of division

2−30

2−25

2−20

2−15

2−10

2−5

20

25

5 10 15 20 25 30 35 40

E
rr
or

Matrix size

Certified error bound
Maximum experimental error

Error bounds and experimental errors for the inversion of triangular matrices of size 4 to 40.
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 40/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

Decomposing some well known matrices

2 ill-conditioned matrices: Hilbert and Cauchy
2 well-conditioned matrices: KMS and Lehmer

100

102

104

106

108

1010

1012

1014

1016

1018

5 10 15

C
on

d
it

io
n

nu
m

b
er

Matrix size

KMS
Lehmer
Prolate
Hilbert
Cauchy

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

 4 6 8 10 12 14

M
a
x

im
u

m
 e

r
r
o

r

Matrix size

Hilbert
Kms

Cauchy
Lehmer
Prolate

Ill-conditioned matrices tend to overflow more often
Ï similar behaviour in floating-point arithmetic

The decompositions of KMS and Lehmer are highly accurate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 41/1

Fixed-point code synthesis for linear algebra basic blocks Cholesky decomposition and triangular matrix inversion

Decomposing some well known matrices

2 ill-conditioned matrices: Hilbert and Cauchy
2 well-conditioned matrices: KMS and Lehmer

100

102

104

106

108

1010

1012

1014

1016

1018

5 10 15

C
on

d
it

io
n

nu
m

b
er

Matrix size

KMS
Lehmer
Prolate
Hilbert
Cauchy

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

 4 6 8 10 12 14

M
a
x

im
u

m
 e

r
r
o

r

Matrix size

Hilbert
Kms

Cauchy
Lehmer
Prolate

Ill-conditioned matrices tend to overflow more often
Ï similar behaviour in floating-point arithmetic

The decompositions of KMS and Lehmer are highly accurate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 41/1

Conclusions and perspectives

Outline of the talk

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 42/1

Conclusions and perspectives

Contributions

A framework for certified fixed-point code synthesis
Formalization and implementation of an arithmetic model

Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ matrix multiplication: accuracy vs. code size trade-offs,

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Publications
DASIP14: Toward the synthesis of fixed-point code for matrix inversion based on Cholesky decomposition [?]

SYNASC14: Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic [?]

PECCS14: Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs for Matrix Multiplication [?]

DASIP12: Design of Fixed-point Embedded Systems (DEFIS) French ANR Project. [?]

SCAN12: Approach based on instruction selection for fast and certified code generation [?]

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 43/1

Conclusions and perspectives

Contributions

A framework for certified fixed-point code synthesis
Formalization and implementation of an arithmetic model

Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ matrix multiplication: accuracy vs. code size trade-offs,

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Publications
DASIP14: Toward the synthesis of fixed-point code for matrix inversion based on Cholesky decomposition [?]

SYNASC14: Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic [?]

PECCS14: Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs for Matrix Multiplication [?]

DASIP12: Design of Fixed-point Embedded Systems (DEFIS) French ANR Project. [?]

SCAN12: Approach based on instruction selection for fast and certified code generation [?]

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 43/1

Conclusions and perspectives

Contributions

A framework for certified fixed-point code synthesis
Formalization and implementation of an arithmetic model

Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ matrix multiplication: accuracy vs. code size trade-offs,

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Publications
DASIP14: Toward the synthesis of fixed-point code for matrix inversion based on Cholesky decomposition [?]

SYNASC14: Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic [?]

PECCS14: Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs for Matrix Multiplication [?]

DASIP12: Design of Fixed-point Embedded Systems (DEFIS) French ANR Project. [?]

SCAN12: Approach based on instruction selection for fast and certified code generation [?]

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 43/1

Conclusions and perspectives

Contributions

A framework for certified fixed-point code synthesis
Formalization and implementation of an arithmetic model

Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ matrix multiplication: accuracy vs. code size trade-offs,

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Publications
DASIP14: Toward the synthesis of fixed-point code for matrix inversion based on Cholesky decomposition [?]

SYNASC14: Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic [?]

PECCS14: Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs for Matrix Multiplication [?]

DASIP12: Design of Fixed-point Embedded Systems (DEFIS) French ANR Project. [?]

SCAN12: Approach based on instruction selection for fast and certified code generation [?]

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 43/1

Conclusions and perspectives

Perspectives

Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

Ï Extend the code size vs. accuracy trade-off strategy to Cholesky decomposition and
triangular matrix inversion

Extend the arithmetic model to support complex arithmetic

Ï Objective: inverting co-variance matrices for Space Time Adaptive Processing

Target hardware implementations

Ï Suggest an arithmetic model for fully custom word-length variables
Ï Code size vs. accuracy → chip area vs. accuracy

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 44/1

Conclusions and perspectives

Perspectives

Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

Ï Extend the code size vs. accuracy trade-off strategy to Cholesky decomposition and
triangular matrix inversion

Extend the arithmetic model to support complex arithmetic

Ï Objective: inverting co-variance matrices for Space Time Adaptive Processing

Target hardware implementations

Ï Suggest an arithmetic model for fully custom word-length variables
Ï Code size vs. accuracy → chip area vs. accuracy

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 44/1

Conclusions and perspectives

Perspectives

Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

Ï Extend the code size vs. accuracy trade-off strategy to Cholesky decomposition and
triangular matrix inversion

Extend the arithmetic model to support complex arithmetic

Ï Objective: inverting co-variance matrices for Space Time Adaptive Processing

Target hardware implementations

Ï Suggest an arithmetic model for fully custom word-length variables
Ï Code size vs. accuracy → chip area vs. accuracy

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 44/1

Conclusions and perspectives

Perspectives

Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

Ï Extend the code size vs. accuracy trade-off strategy to Cholesky decomposition and
triangular matrix inversion

Extend the arithmetic model to support complex arithmetic

Ï Objective: inverting co-variance matrices for Space Time Adaptive Processing

Target hardware implementations

Ï Suggest an arithmetic model for fully custom word-length variables
Ï Code size vs. accuracy → chip area vs. accuracy

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 44/1

Conclusions and perspectives

M
E
R
C
I

[Wil98] H. Keding, M. Willems, M. Coors, and H. Meyr.
Fridge: a fixed-point design and simulation
environment.

[IEEE754] IEEE 754.
IEEE Standard for Floating-Point Arithmetic.

[MCCS02] Daniel Menard, Daniel Chillet, François Charot, and
Olivier Sentieys.
Automatic floating-point to fixed-point conversion for
DSP code generation.

[IBMK10] Ali Irturk, Bridget Benson, Shahnam Mirzaei, and
Ryan Kastner.
GUSTO: An Automatic Generation and Optimization
Tool for Matrix Inversion Architectures.

[LHD12] Benoit Lopez, Thibault Hilaire, and Laurent-Stéphane
Didier.
Sum-of-products evaluation schemes with fixed-point
arithmetic, and their application to IIR filter
implementation.

[FRC03] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen.
Fast, accurate static analysis for fixed-point
finite-precision effects in dsp designs.

[MRS12] Daniel Ménard, Romuald Rocher, Olivier Sentieys,
Nicolas Simon, Laurent-Stéphane Didier, Thibault
Hilaire, Benoît Lopez, Eric Goubault, Sylvie Putot,
Franck Vedrine, Amine Najahi, Guillaume Revy, Laurent
Fangain, Christian Samoyeau, Fabrice Lemonnier, and
Christophe Clienti.
Design of Fixed-Point Embedded Systems (defis)
French ANR Project.

[LHD14] Benoit Lopez, Thibault Hilaire, and Laurent-Stéphane
Didier.
Formatting bits to better implement signal processing
algorithms.

[Rev09] Guillaume Revy.
Implementation of binary floating-point arithmetic on
embedded integer processors - Polynomial
evaluation-based algorithms and certified code
generation.

[MNR12] Christophe Mouilleron, Amine Najahi, and Guillaume
Revy.
Approach based on instruction selection for fast and
certified code generation.

[MR11] Christophe Mouilleron and Guillaume Revy.
Automatic Generation of Fast and Certified Code for
Polynomial Evaluation.

[KG08] David R. Koes and Seth C. Goldstein.
Near-optimal instruction selection on DAGs.

[MNR14b] Matthieu Martel, Amine Najahi, and Guillaume Revy.
Toward the synthesis of fixed-point code for matrix
inversion based on cholesky decomposition.

[MNR14c] Christophe Mouilleron, Amine Najahi, and Guillaume
Revy.
Automated Synthesis of Target-Dependent Programs
for Polynomial Evaluation in Fixed-Point Arithmetic.

[MNR14a] Matthieu Martel, Amine Najahi, and Guillaume Revy.
Code Size and Accuracy-Aware Synthesis of
Fixed-Point Programs for Matrix Multiplication.

[CG09] Jason Cong, Karthik Gururaj, Bin Liu 0006, Chunyue
Liu, Zhiru Zhang, Sheng Zhou, and Yi Zou.
Evaluation of static analysis techniques for fixed-point
precision optimization.

[LV09] Dong-U Lee and John D. Villasenor.
Optimized custom precision function evaluation for
embedded processors.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 45/1

