
DEFIS WP3 meeting
Perpignan, July 9 th, 2013

Automated synthesis of fixed-point programs:
the case of matrix multiplication and,
some elements on matrix inversion

Amine Najahi

Advisers: M. Martel and G. Revy

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

D
A

LI

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 1/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

floating−point arithmetic

Software implementing

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Conversion

FP computations

Applications

Fixed−point

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 4/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 5/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 6/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 6/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 6/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
For each intermediate variable ri , we store 2 intervals val(ri) and err(ri)

For each basic operator, we have rules to compute val(ri) and err(ri)

Addition:
Ï The two variables have to be in the same fixed-point format

+

l r

val(ri)= val(l)+val(r)

err(ri)= err(l)+err(r)
1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 2.65625+

1 1 1 1 0 1 1 1 7.7187

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 7/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
For each intermediate variable ri , we store 2 intervals val(ri) and err(ri)

For each basic operator, we have rules to compute val(ri) and err(ri)

Addition:
Ï The two variables have to be in the same fixed-point format

+

l r

val(ri)= val(l)+val(r)

err(ri)= err(l)+err(r)
1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 2.65625+

1 1 1 1 0 1 1 1 7.7187

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 7/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)
Multiplication:

Ï The product of a Qa,b variable by a Qc,d variable yields a Qa+c,b+d variable

×

l r

val(ri)= val(l)×val(r)

err(ri)= errmul +err(l)×err(r)

+err(l)×val(r)

+val(r)×err(l)

1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 1.328125×

0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 6.723632812 6.625

truncated

Physical and virtual shifts:

À

l

Àv

l

val(ri)= val(l)À 2
err(ri)= errshift +err(l)À 2

val(ri)= val(l)¿ 2
err(ri)= err(l)¿ 2

0 1 1 1 0 0 1 0 3.5625

2À
0 0 0 1 1 1 0 0 0.8906251 0

truncated

0.875

0 0 0 1 1 1 0 0 0.875

2Àv

0 0 0 1 1 1 0 0 3.5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 8/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)
Multiplication:

Ï The product of a Qa,b variable by a Qc,d variable yields a Qa+c,b+d variable

×

l r

val(ri)= val(l)×val(r)

err(ri)= errmul +err(l)×err(r)

+err(l)×val(r)

+val(r)×err(l)

1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 1.328125×

0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 6.723632812 6.625

truncated

Physical and virtual shifts:

À

l

Àv

l

val(ri)= val(l)À 2
err(ri)= errshift +err(l)À 2

val(ri)= val(l)¿ 2
err(ri)= err(l)¿ 2

0 1 1 1 0 0 1 0 3.5625

2À
0 0 0 1 1 1 0 0 0.8906251 0

truncated

0.875

0 0 0 1 1 1 0 0 0.875

2Àv

0 0 0 1 1 1 0 0 3.5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 8/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

(c0 + (c1 +c2))

+

+

×

a0 b0

×

a1 b1

×

a2 b2

((c0 +c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 9/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

Q8,15

Q7,15Q2,14

Q1,15 Q6,10

(c0 + (c1 +c2))

in full
precision

+

+

×

a0 b0

×

a1 b1

×

a2 b2

Q7,15

Q3,15 Q6,10

Q2,14 Q1,15

((c0 +c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 9/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

Q8,8

Q7,9Q2,14

Q1,15 Q6,10

(c0 + (c1 +c2))

with 16 bits
precision

+

+

×

a0 b0

×

a1 b1

×

a2 b2

Q7,9

Q3,13 Q6,10

Q2,14 Q1,15

((c0 +c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 9/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Combinatorial issues in dot product generation

Number of dot product evaluation schemes
Given by the sequence A001147(n) in the OEIS and the formula: (2n−1)!!

Dot product size 3 5 10 16 20 · · ·
Number of schemes 3 105 34459425≈ 225 6190283353629375≈ 252 8200794532637891559375≈ 273 · · ·

Remarks
Picking a scheme that minimizes the evaluation error is one of the difficulties of
writing fixed-point code

Ï Makes it hard to write fixed-point code by hand
Ï Appeals for tools with strong heuristics to automate the process

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 10/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE 1 library

Initially developed by Revy and Mouilleron
Ï With the aim of generating fast and certified C code for polynomial evaluation

1. fast selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

2. certified produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>
<instruction name="add"

type="unsigned"

 <coefficient ... >
<polynomial>

 ...
 <variable ... > ...

</polynomial>
 <error ... >

inputs="32 32"

</architecture>
... />
gappa="..."
macro="static inline ..."
nodes="add dag 1 ..."

output="32"
latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

Front-ends available so far: sum, dot product, univariate and bivariate polynomials

Back-ends available so far: C code, VHDL code, GAPPA certificates

1Code Generation for Polynomial Evaluation
A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 11/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE 1 library

Initially developed by Revy and Mouilleron
Ï With the aim of generating fast and certified C code for polynomial evaluation

1. fast selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

2. certified produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>
<instruction name="add"

type="unsigned"

 <coefficient ... >
<polynomial>

 ...
 <variable ... > ...

</polynomial>
 <error ... >

inputs="32 32"

</architecture>
... />
gappa="..."
macro="static inline ..."
nodes="add dag 1 ..."

output="32"
latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

Front-ends available so far: sum, dot product, univariate and bivariate polynomials

Back-ends available so far: C code, VHDL code, GAPPA certificates

1Code Generation for Polynomial Evaluation
A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 11/29

Efficient matrix multiplication in fixed-point arithmetic

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 12/29

Efficient matrix multiplication in fixed-point arithmetic

Defining the problem

Inputs:

Ï a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

cgpeGenDotProduct

Vector v of fixed-
point variables

Vector u of fixed-
point variables

C code that
evaluates u · v

Accuracy certificate

Ï 2 fixed-point matrices A and B

Output
Ï C code that evaluates the product M =A ·B in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 13/29

Efficient matrix multiplication in fixed-point arithmetic

Defining the problem

Inputs:

Ï a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

cgpeGenDotProduct

Vector v of fixed-
point variables

Vector u of fixed-
point variables

C code that
evaluates u · v

Accuracy certificate

Ï 2 fixed-point matrices A and B

Output
Ï C code that evaluates the product M =A ·B in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 13/29

Efficient matrix multiplication in fixed-point arithmetic

Straightforward algorithms

Accurate product
Main idea: Generate a dot product
code for each coefficient of the
resulting matrix

AccurateProduct
Inputs:

Two fixed-point square matrices A and B
Outputs:

C code to compute the product AB
Steps:
1: for 1< i ≤ n do
2: for 1< j ≤ n do
3: cgpeGenDotProduct(Ai ,Bj);
4: end for
5: end for

Compact product
Main idea: Generate a unique dot
product code for all the coefficient
of the resulting matrix

CompactProduct
Inputs:

Two fixed-point square matrices A and B
Outputs:

C code to compute the product AB
Steps:
1: compute v such that v =A1 ∪A2 ∪·· ·∪An
2: compute w such that w =B1 ∪B2 ∪·· ·∪Bn
3: cgpeGenDotProduct(v ,w);

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 14/29

Efficient matrix multiplication in fixed-point arithmetic

Illustration through a toy example
We consider the multiplication of the following two fixed-point matrices:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Accurate product
1. Output format of DotProduct0,0: Q26,6

2. Output format of DotProduct0,1: Q18,14

3. Output format of DotProduct1,0: Q15,17

4. Output format of DotProduct1,1: Q7,25

Certified errors bounds:(
0.03125 0.00012207

1.52588e−05 5.96046e−08

)

Average error bound: 0.00784≈ 2−7

Compact product

u =
(
[−1000,1000] [−3000,3000]

)
v =

(
[−2000,2000]

[−4000,4000]

)
1. Output format of DotProductu,v : Q26,6

Certified errors bounds:(
0.03125 0.03125

0.03125 0.03125

)

Average error bound: 0.03125≈ 2−5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 15/29

Efficient matrix multiplication in fixed-point arithmetic

Illustration through a toy example
We consider the multiplication of the following two fixed-point matrices:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Accurate product
1. Output format of DotProduct0,0: Q26,6

2. Output format of DotProduct0,1: Q18,14

3. Output format of DotProduct1,0: Q15,17

4. Output format of DotProduct1,1: Q7,25

Certified errors bounds:(
0.03125 0.00012207

1.52588e−05 5.96046e−08

)

Average error bound: 0.00784≈ 2−7

Compact product

u =
(
[−1000,1000] [−3000,3000]

)
v =

(
[−2000,2000]

[−4000,4000]

)
1. Output format of DotProductu,v : Q26,6

Certified errors bounds:(
0.03125 0.03125

0.03125 0.03125

)

Average error bound: 0.03125≈ 2−5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 15/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

B =

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

B =

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

Accurate product B =

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

Compact product B =

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

B =

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

B =

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Distances
The Hausdorff distance dH

dH : IR× IR→R

dH
(
[a,a] , [b,b]

)=max
{∣∣a−b

∣∣ ,
∣∣a−b

∣∣}
Example

Let A= [−3,1] and B = [2,4] be two intervals in I (R), we have:
∪(A,B)= [−3,4] dH(A,B)= 5

Ra1 a1 b1 b1
0 dH (A,B)

Another possible criterion

dd : IR× IR→R

dd
(
[a,a] , [b,b]

)= diam
(
[a,a]∪ [b,b]

)
Example

∪(A,B)= [−3,4] dd (A,B)= 7

Ra1 a1 b1 b1
0 dd (A,B)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 17/29

Efficient matrix multiplication in fixed-point arithmetic

Distances
The Hausdorff distance dH

dH : IR× IR→R

dH
(
[a,a] , [b,b]

)=max
{∣∣a−b

∣∣ ,
∣∣a−b

∣∣}
Example

Let A= [−3,1] and B = [2,4] be two intervals in I (R), we have:
∪(A,B)= [−3,4] dH(A,B)= 5

Ra1 a1 b1 b1
0 dH (A,B)

Another possible criterion

dd : IR× IR→R

dd
(
[a,a] , [b,b]

)= diam
(
[a,a]∪ [b,b]

)
Example

∪(A,B)= [−3,4] dd (A,B)= 7

Ra1 a1 b1 b1
0 dd (A,B)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 17/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=

a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44

A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=

a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24

A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=

a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44

A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=

a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24

A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=

a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44

A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=

a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24

A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=

a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44

A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=

a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24

A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (2/2)
Algorithm 1 Dynamic Closest Pair algorithm
Inputs:

Two square matrices A ∈ Fixn×n and B ∈ Fixn×n

a criterion C

Outputs:
C code to compute the product AB s.t. C is satisfied

Steps:
1: S1 = {A1, . . . ,An}
2: S2 = {B1, . . . ,Bn}
3: while C is satisfied do
4: (u1,u2,du1 ,u2)= findClosestPair(S1)
5: (v1,v2,dv1 ,v2)= findClosestPair(S2)
6: if du1 ,u2 ≤ dv1 ,v2 then
7: remove(u1,S1); remove(u2,S1); insert(u1 ∪u2,S1)
8: else
9: remove(v1,S2); remove(v2,S2); insert(v1 ∪v2,S2)

10: end if
11: for Ai ∈S1 do
12: for Bj ∈S2 do
13: cgpeGenDotProduct(Ai ,Bj)
14: end for
15: end for
16: end while

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 19/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (2/2)
Algorithm 2 Dynamic Closest Pair algorithm
Inputs:

Two square matrices A ∈ Fixn×n and B ∈ Fixn×n

a criterion C : the average error bound is ≤ ε

Outputs:
C code to compute the product AB s.t. C is satisfied

Steps:
1: S1 = {A1, . . . ,An}
2: S2 = {B1, . . . ,Bn}
3: while average error ≤ ε do
4: (u1,u2,du1 ,u2)= findClosestPair(S1)
5: (v1,v2,dv1 ,v2)= findClosestPair(S2)
6: if du1 ,u2 ≤ dv1 ,v2 then
7: remove(u1,S1); remove(u2,S1); insert(u1 ∪u2,S1)
8: else
9: remove(v1,S2); remove(v2,S2); insert(v1 ∪v2,S2)

10: end if
11: for Ai ∈S1 do
12: for Bj ∈S2 do
13: cgpeGenDotProduct(Ai ,Bj)
14: end for
15: end for
16: end while

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 19/29

Efficient matrix multiplication in fixed-point arithmetic

Benchmarks
1. Weight matrices with dynamic range 2b n

2 c−1

2. Normally distributed random matrices (generated by matlab)
3. We took the Hadamard product of both matrices H
4. The matrices fed to the algorithm are midrad(H,1)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2max(i ,j ,n−1−i ,n−1−j)−bn/2c ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Edges

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2min(i ,j ,n−1−i ,n−1−j) ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Center

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2Rand(0,bn/2c−1) ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Random

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2bi/2c ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Rows

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 20/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-18

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Center Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-14

2
-13

2
-12

2
-11

2
-10

2
-9

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Edges Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Random Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

2
-10

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Rows/Columns Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Demo

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 22/29

State of the art on matrix inversion in fixed-point arithmetic

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 23/29

State of the art on matrix inversion in fixed-point arithmetic

Matrix inversion in THALES STAP benchmark
void Mat_Invert(int ntt, int nsa, Cplfloat In[ntt*nsa][ntt*nsa], Cplfloat Out[ntt*nsa][ntt*nsa]) {

double inv[nsa*ntt][2*nsa*ntt][2];
double pivot[2], coef[2];
float re, im;
int i=0, j=0, k=0, l=0;
for (i=0; i<ntt*nsa; i++) {

for (j=0; j<ntt*nsa; j++) {
inv[i][j][0] = (double) In[i][j].re; inv[i][j][1] = (double) In[i][j].im;
if (i == j) {

inv[i][j+nsa*ntt][0] =1.0; inv[i][j+nsa*ntt][1] =0.0;
} else {

inv[i][j+nsa*ntt][0]=0.0; inv[i][j+nsa*ntt][1] =0.0;
}

}
}
for (i=0; i<nsa*ntt; i++) {

pivot[0]=inv[i][i][0]; pivot[1]=inv[i][i][1];
if (pivot[0] == 0.) {

printf("\n Pivot nul re = %f , im = %f\n", pivot[0], pivot[1]);
exit(0);

}
for (j=i; j<2*nsa*ntt; j++) {

re = inv[i][j][0]; im = inv[i][j][1];
inv[i][j][0] = (re * pivot[0] + im * pivot[1])/(pivot[0] * pivot[0] + pivot[1] * pivot[1]);
inv[i][j][1] = (im * pivot[0] - re * pivot[1])/(pivot[0] * pivot[0] + pivot[1] * pivot[1]);

}
for (k=0; k<nsa*ntt; k++) {

if (i!=k) {
coef[0] = inv[k][i][0]; coef[1] = inv[k][i][1];
for (l=i; l<2*nsa*ntt; l++) {

inv[k][l][0] -= (coef[0] * inv[i][l][0] - coef[1] * inv[i][l][1]);
inv[k][l][1] -= (coef[0] * inv[i][l][1] + coef[1] * inv[i][l][0]);

}
}

}
}
for (i=0; i<nsa*ntt; i++) {

for (j=0; j<nsa*ntt; j++) {
Out[i][j].re = (float) inv[i][j+nsa*ntt][0]; Out[i][j].im = (float) inv[i][j+nsa*ntt][1];

}
}

}

1
Initialization

A
ssign.

the
pivot

N
orm

.
the

pivot’s
row

A
pplying

to
the

rest
C

opying
in

O
ut

Iterate
on

num
ber

ofrow
s

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 24/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Initialization:

In0,0 In0,1 · · · In0,n−1 1 · · · · · · 0
In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Picking the
pivot

In0,0 In0,1 · · · In0,n−1 1 · · · · · · 0
In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Normalizing
the pivot’s row

1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Putting zeros
in the pivot’s column

1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

0 In1,1 − In1,0
In0,1
In0,0

· · · In1,n−1 − In1,0
In0,n−1

In0,0
0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

0 Inn−1,1 − Inn−1,0
In0,1
In0,0

· · · Inn−1,n−1 − Inn−1,0
In0,n−1

In0,0
0 · · · · · · 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 2: Picking the
pivot

1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

0 In1,1 − In1,0
In0,1
In0,0

· · · In1,n−1 − In1,0
In0,n−1

In0,0
0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

0 Inn−1,1 − Inn−1,0
In0,1
In0,0

· · · Inn−1,n−1 − Inn−1,0
In0,n−1

In0,0
0 · · · · · · 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

Some remarks on this implementation

It is based on row reduction

The implementation is optimized

Computes the inverse in place
Ï avoids backward as well as forward substitution

Which parts are easily convertible to fixed-point?
1. Initialization 3

2. Picking the pivot 3

3. Normalizing the pivot’s row (Division by the pivot) 7

4. Putting zeros in the pivot’s column (Additions and multiplication) 3

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 26/29

State of the art on matrix inversion in fixed-point arithmetic

Issues with the division operator

Consider the analytic method to invert a matrix: A−1 = com(A)T

det(A)

For a 2×2 matrix A=
(
a b

c d

)
, A−1 = 1

det(A)

(
d −b

−c a

)

Example
Let a,b,c,d ∈ [1,2]:

Suppose the format of a, b, c and d is Q3,29

Using interval arithmetic, det(A)= ad −bc ∈ [−3,3] Q3,29

Now consider the matrix M =
(
1+2−28 1

1 1

)
 det(M)= 2−28

Then what should be the format of
a

det(A)
?

Ï To avoid overflow, it should be at least Q31,1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 27/29

State of the art on matrix inversion in fixed-point arithmetic

Available works on linear algebra routines

Works that exploits simulation-based methods
Frantz et al. (2007):

Ï Decompositions investigated: SVD, Cholesky, LU and QR
Ï Matrices size: up to 30
Ï A posteriori error estimation

Irturk et al. (2006): GUSTO tool
Ï Decompositions investigated: Cholesky, LU, QR and analytic
Ï Matrices size: up to 8
Ï A posteriori error estimation

Works with proven and certified error bounds
?

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 28/29

State of the art on matrix inversion in fixed-point arithmetic

DEFIS WP3 meeting
Perpignan, July 9 th, 2013

Automated synthesis of fixed-point programs:
the case of matrix multiplication and,
some elements on matrix inversion

Amine Najahi

Advisers: M. Martel and G. Revy

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

D
A

LI

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 29/29

	DALI 2013
	Synthesizing fixed-point formulas: combinatorial and numerical issues
	Efficient matrix multiplication in fixed-point arithmetic
	State of the art on matrix inversion in fixed-point arithmetic

