
DEFIS WP3 meeting
Perpignan, July 9 th, 2013

Automated synthesis of fixed-point programs:
the case of matrix multiplication and,
some elements on matrix inversion

Amine Najahi

Advisers: M. Martel and G. Revy

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

D
A

LI

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 1/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

floating−point arithmetic

Software implementing

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Conversion

FP computations

Applications

Fixed−point

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 2/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 3/29

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 4/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 5/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 6/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 6/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 6/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
For each intermediate variable ri , we store 2 intervals val(ri) and err(ri)

For each basic operator, we have rules to compute val(ri) and err(ri)

Addition:
Ï The two variables have to be in the same fixed-point format

+

l r

val(ri)= val(l)+val(r)

err(ri)= err(l)+err(r)
1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 2.65625+

1 1 1 1 0 1 1 1 7.7187

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 7/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
For each intermediate variable ri , we store 2 intervals val(ri) and err(ri)

For each basic operator, we have rules to compute val(ri) and err(ri)

Addition:
Ï The two variables have to be in the same fixed-point format

+

l r

val(ri)= val(l)+val(r)

err(ri)= err(l)+err(r)
1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 2.65625+

1 1 1 1 0 1 1 1 7.7187

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 7/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)
Multiplication:

Ï The product of a Qa,b variable by a Qc,d variable yields a Qa+c,b+d variable

×

l r

val(ri)= val(l)×val(r)

err(ri)= errmul +err(l)×err(r)

+err(l)×val(r)

+val(r)×err(l)

1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 1.328125×

0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 6.723632812 6.625

truncated

Physical and virtual shifts:

À

l

Àv

l

val(ri)= val(l)À 2
err(ri)= errshift +err(l)À 2

val(ri)= val(l)¿ 2
err(ri)= err(l)¿ 2

0 1 1 1 0 0 1 0 3.5625

2À
0 0 0 1 1 1 0 0 0.8906251 0

truncated

0.875

0 0 0 1 1 1 0 0 0.875

2Àv

0 0 0 1 1 1 0 0 3.5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 8/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)
Multiplication:

Ï The product of a Qa,b variable by a Qc,d variable yields a Qa+c,b+d variable

×

l r

val(ri)= val(l)×val(r)

err(ri)= errmul +err(l)×err(r)

+err(l)×val(r)

+val(r)×err(l)

1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 1.328125×

0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 6.723632812 6.625

truncated

Physical and virtual shifts:

À

l

Àv

l

val(ri)= val(l)À 2
err(ri)= errshift +err(l)À 2

val(ri)= val(l)¿ 2
err(ri)= err(l)¿ 2

0 1 1 1 0 0 1 0 3.5625

2À
0 0 0 1 1 1 0 0 0.8906251 0

truncated

0.875

0 0 0 1 1 1 0 0 0.875

2Àv

0 0 0 1 1 1 0 0 3.5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 8/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

(c0 + (c1 +c2))

+

+

×

a0 b0

×

a1 b1

×

a2 b2

((c0 +c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 9/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

Q8,15

Q7,15Q2,14

Q1,15 Q6,10

(c0 + (c1 +c2))

in full
precision

+

+

×

a0 b0

×

a1 b1

×

a2 b2

Q7,15

Q3,15 Q6,10

Q2,14 Q1,15

((c0 +c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 9/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

Q8,8

Q7,9Q2,14

Q1,15 Q6,10

(c0 + (c1 +c2))

with 16 bits
precision

+

+

×

a0 b0

×

a1 b1

×

a2 b2

Q7,9

Q3,13 Q6,10

Q2,14 Q1,15

((c0 +c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 9/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

Combinatorial issues in dot product generation

Number of dot product evaluation schemes
Given by the sequence A001147(n) in the OEIS and the formula: (2n−1)!!

Dot product size 3 5 10 16 20 · · ·
Number of schemes 3 105 34459425≈ 225 6190283353629375≈ 252 8200794532637891559375≈ 273 · · ·

Remarks
Picking a scheme that minimizes the evaluation error is one of the difficulties of
writing fixed-point code

Ï Makes it hard to write fixed-point code by hand
Ï Appeals for tools with strong heuristics to automate the process

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 10/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE 1 library

Initially developed by Revy and Mouilleron
Ï With the aim of generating fast and certified C code for polynomial evaluation

1. fast selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

2. certified produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>
<instruction name="add"

type="unsigned"

 <coefficient ... >
<polynomial>

 ...
 <variable ... > ...

</polynomial>
 <error ... >

inputs="32 32"

</architecture>
... />
gappa="..."
macro="static inline ..."
nodes="add dag 1 ..."

output="32"
latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

Front-ends available so far: sum, dot product, univariate and bivariate polynomials

Back-ends available so far: C code, VHDL code, GAPPA certificates

1Code Generation for Polynomial Evaluation
A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 11/29

Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE 1 library

Initially developed by Revy and Mouilleron
Ï With the aim of generating fast and certified C code for polynomial evaluation

1. fast selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

2. certified produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>
<instruction name="add"

type="unsigned"

 <coefficient ... >
<polynomial>

 ...
 <variable ... > ...

</polynomial>
 <error ... >

inputs="32 32"

</architecture>
... />
gappa="..."
macro="static inline ..."
nodes="add dag 1 ..."

output="32"
latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

Front-ends available so far: sum, dot product, univariate and bivariate polynomials

Back-ends available so far: C code, VHDL code, GAPPA certificates

1Code Generation for Polynomial Evaluation
A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 11/29

Efficient matrix multiplication in fixed-point arithmetic

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 12/29

Efficient matrix multiplication in fixed-point arithmetic

Defining the problem

Inputs:

Ï a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

cgpeGenDotProduct

Vector v of fixed-
point variables

Vector u of fixed-
point variables

C code that
evaluates u · v

Accuracy certificate

Ï 2 fixed-point matrices A and B

Output
Ï C code that evaluates the product M =A ·B in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 13/29

Efficient matrix multiplication in fixed-point arithmetic

Defining the problem

Inputs:

Ï a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

cgpeGenDotProduct

Vector v of fixed-
point variables

Vector u of fixed-
point variables

C code that
evaluates u · v

Accuracy certificate

Ï 2 fixed-point matrices A and B

Output
Ï C code that evaluates the product M =A ·B in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 13/29

Efficient matrix multiplication in fixed-point arithmetic

Straightforward algorithms

Accurate product
Main idea: Generate a dot product
code for each coefficient of the
resulting matrix

AccurateProduct
Inputs:

Two fixed-point square matrices A and B
Outputs:

C code to compute the product AB
Steps:
1: for 1< i ≤ n do
2: for 1< j ≤ n do
3: cgpeGenDotProduct(Ai ,Bj);
4: end for
5: end for

Compact product
Main idea: Generate a unique dot
product code for all the coefficient
of the resulting matrix

CompactProduct
Inputs:

Two fixed-point square matrices A and B
Outputs:

C code to compute the product AB
Steps:
1: compute v such that v =A1 ∪A2 ∪·· ·∪An
2: compute w such that w =B1 ∪B2 ∪·· ·∪Bn
3: cgpeGenDotProduct(v ,w);

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 14/29

Efficient matrix multiplication in fixed-point arithmetic

Illustration through a toy example
We consider the multiplication of the following two fixed-point matrices:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Accurate product
1. Output format of DotProduct0,0: Q26,6

2. Output format of DotProduct0,1: Q18,14

3. Output format of DotProduct1,0: Q15,17

4. Output format of DotProduct1,1: Q7,25

Certified errors bounds:(
0.03125 0.00012207

1.52588e−05 5.96046e−08

)

Average error bound: 0.00784≈ 2−7

Compact product

u =
(
[−1000,1000] [−3000,3000]

)
v =

(
[−2000,2000]

[−4000,4000]

)
1. Output format of DotProductu,v : Q26,6

Certified errors bounds:(
0.03125 0.03125

0.03125 0.03125

)

Average error bound: 0.03125≈ 2−5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 15/29

Efficient matrix multiplication in fixed-point arithmetic

Illustration through a toy example
We consider the multiplication of the following two fixed-point matrices:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Accurate product
1. Output format of DotProduct0,0: Q26,6

2. Output format of DotProduct0,1: Q18,14

3. Output format of DotProduct1,0: Q15,17

4. Output format of DotProduct1,1: Q7,25

Certified errors bounds:(
0.03125 0.00012207

1.52588e−05 5.96046e−08

)

Average error bound: 0.00784≈ 2−7

Compact product

u =
(
[−1000,1000] [−3000,3000]

)
v =

(
[−2000,2000]

[−4000,4000]

)
1. Output format of DotProductu,v : Q26,6

Certified errors bounds:(
0.03125 0.03125

0.03125 0.03125

)

Average error bound: 0.03125≈ 2−5

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 15/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


Accurate product B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


Compact product B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 16/29

Efficient matrix multiplication in fixed-point arithmetic

Distances
The Hausdorff distance dH

dH : IR× IR→R

dH
(
[a,a] , [b,b]

)=max
{∣∣a−b

∣∣ ,
∣∣a−b

∣∣}
Example

Let A= [−3,1] and B = [2,4] be two intervals in I (R), we have:
∪(A,B)= [−3,4] dH(A,B)= 5

Ra1 a1 b1 b1
0 dH (A,B)

Another possible criterion

dd : IR× IR→R

dd
(
[a,a] , [b,b]

)= diam
(
[a,a]∪ [b,b]

)
Example

∪(A,B)= [−3,4] dd (A,B)= 7

Ra1 a1 b1 b1
0 dd (A,B)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 17/29

Efficient matrix multiplication in fixed-point arithmetic

Distances
The Hausdorff distance dH

dH : IR× IR→R

dH
(
[a,a] , [b,b]

)=max
{∣∣a−b

∣∣ ,
∣∣a−b

∣∣}
Example

Let A= [−3,1] and B = [2,4] be two intervals in I (R), we have:
∪(A,B)= [−3,4] dH(A,B)= 5

Ra1 a1 b1 b1
0 dH (A,B)

Another possible criterion

dd : IR× IR→R

dd
(
[a,a] , [b,b]

)= diam
(
[a,a]∪ [b,b]

)
Example

∪(A,B)= [−3,4] dd (A,B)= 7

Ra1 a1 b1 b1
0 dd (A,B)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 17/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=


a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44


A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=


a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24


A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=


a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44


A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=


a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24


A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=


a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44


A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=


a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24


A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=


a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44


A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=


a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24


A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 18/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (2/2)
Algorithm 1 Dynamic Closest Pair algorithm
Inputs:

Two square matrices A ∈ Fixn×n and B ∈ Fixn×n

a criterion C

Outputs:
C code to compute the product AB s.t. C is satisfied

Steps:
1: S1 = {A1, . . . ,An}
2: S2 = {B1, . . . ,Bn}
3: while C is satisfied do
4: (u1,u2,du1 ,u2)= findClosestPair(S1)
5: (v1,v2,dv1 ,v2)= findClosestPair(S2)
6: if du1 ,u2 ≤ dv1 ,v2 then
7: remove(u1,S1); remove(u2,S1); insert(u1 ∪u2,S1)
8: else
9: remove(v1,S2); remove(v2,S2); insert(v1 ∪v2,S2)

10: end if
11: for Ai ∈S1 do
12: for Bj ∈S2 do
13: cgpeGenDotProduct(Ai ,Bj)
14: end for
15: end for
16: end while

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 19/29

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (2/2)
Algorithm 2 Dynamic Closest Pair algorithm
Inputs:

Two square matrices A ∈ Fixn×n and B ∈ Fixn×n

a criterion C : the average error bound is ≤ ε

Outputs:
C code to compute the product AB s.t. C is satisfied

Steps:
1: S1 = {A1, . . . ,An}
2: S2 = {B1, . . . ,Bn}
3: while average error ≤ ε do
4: (u1,u2,du1 ,u2)= findClosestPair(S1)
5: (v1,v2,dv1 ,v2)= findClosestPair(S2)
6: if du1 ,u2 ≤ dv1 ,v2 then
7: remove(u1,S1); remove(u2,S1); insert(u1 ∪u2,S1)
8: else
9: remove(v1,S2); remove(v2,S2); insert(v1 ∪v2,S2)

10: end if
11: for Ai ∈S1 do
12: for Bj ∈S2 do
13: cgpeGenDotProduct(Ai ,Bj)
14: end for
15: end for
16: end while

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 19/29

Efficient matrix multiplication in fixed-point arithmetic

Benchmarks
1. Weight matrices with dynamic range 2b n

2 c−1

2. Normally distributed random matrices (generated by matlab)
3. We took the Hadamard product of both matrices H
4. The matrices fed to the algorithm are midrad(H,1)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2max(i ,j ,n−1−i ,n−1−j)−bn/2c ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Edges

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2min(i ,j ,n−1−i ,n−1−j) ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Center

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2Rand(0,bn/2c−1) ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Random

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Wi ,j = 2bi/2c ◦
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Rows

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 20/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-18

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Center Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-14

2
-13

2
-12

2
-11

2
-10

2
-9

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Edges Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Random Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Results

 0

 100

 200

 300

 400

 500

 600

 700

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

2
-10

N
u
m

b
e
r

o
f
d
o
t
p
ro

d
u
c
t
c
o
d
e
s

Average precision bound

Rows/Columns Benchmark

Random pair Algorithm
Best pair Algorithm

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 21/29

Efficient matrix multiplication in fixed-point arithmetic

Demo

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 22/29

State of the art on matrix inversion in fixed-point arithmetic

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 23/29

State of the art on matrix inversion in fixed-point arithmetic

Matrix inversion in THALES STAP benchmark
void Mat_Invert(int ntt, int nsa, Cplfloat In[ntt*nsa][ntt*nsa], Cplfloat Out[ntt*nsa][ntt*nsa]) {

double inv[nsa*ntt][2*nsa*ntt][2];
double pivot[2], coef[2];
float re, im;
int i=0, j=0, k=0, l=0;
for (i=0; i<ntt*nsa; i++) {

for (j=0; j<ntt*nsa; j++) {
inv[i][j][0] = (double) In[i][j].re; inv[i][j][1] = (double) In[i][j].im;
if (i == j) {

inv[i][j+nsa*ntt][0] =1.0; inv[i][j+nsa*ntt][1] =0.0;
} else {

inv[i][j+nsa*ntt][0]=0.0; inv[i][j+nsa*ntt][1] =0.0;
}

}
}
for (i=0; i<nsa*ntt; i++) {

pivot[0]=inv[i][i][0]; pivot[1]=inv[i][i][1];
if (pivot[0] == 0.) {

printf("\n Pivot nul re = %f , im = %f\n", pivot[0], pivot[1]);
exit(0);

}
for (j=i; j<2*nsa*ntt; j++) {

re = inv[i][j][0]; im = inv[i][j][1];
inv[i][j][0] = (re * pivot[0] + im * pivot[1])/(pivot[0] * pivot[0] + pivot[1] * pivot[1]);
inv[i][j][1] = (im * pivot[0] - re * pivot[1])/(pivot[0] * pivot[0] + pivot[1] * pivot[1]);

}
for (k=0; k<nsa*ntt; k++) {

if (i!=k) {
coef[0] = inv[k][i][0]; coef[1] = inv[k][i][1];
for (l=i; l<2*nsa*ntt; l++) {

inv[k][l][0] -= (coef[0] * inv[i][l][0] - coef[1] * inv[i][l][1]);
inv[k][l][1] -= (coef[0] * inv[i][l][1] + coef[1] * inv[i][l][0]);

}
}

}
}
for (i=0; i<nsa*ntt; i++) {

for (j=0; j<nsa*ntt; j++) {
Out[i][j].re = (float) inv[i][j+nsa*ntt][0]; Out[i][j].im = (float) inv[i][j+nsa*ntt][1];

}
}

}

1
Initialization

A
ssign.

the
pivot

N
orm

.
the

pivot’s
row

A
pplying

to
the

rest
C

opying
in

O
ut

Iterate
on

num
ber

ofrow
s

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 24/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Initialization:


In0,0 In0,1 · · · In0,n−1 1 · · · · · · 0
In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1



A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Picking the
pivot


In0,0 In0,1 · · · In0,n−1 1 · · · · · · 0
In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1



A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Normalizing
the pivot’s row



1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1



A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Putting zeros
in the pivot’s column



1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

0 In1,1 − In1,0
In0,1
In0,0

· · · In1,n−1 − In1,0
In0,n−1

In0,0
0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

0 Inn−1,1 − Inn−1,0
In0,1
In0,0

· · · Inn−1,n−1 − Inn−1,0
In0,n−1

In0,0
0 · · · · · · 1



A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 2: Picking the
pivot



1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

0 In1,1 − In1,0
In0,1
In0,0

· · · In1,n−1 − In1,0
In0,n−1

In0,0
0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

0 Inn−1,1 − Inn−1,0
In0,1
In0,0

· · · Inn−1,n−1 − Inn−1,0
In0,n−1

In0,0
0 · · · · · · 1



A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 25/29

State of the art on matrix inversion in fixed-point arithmetic

Some remarks on this implementation

It is based on row reduction

The implementation is optimized

Computes the inverse in place
Ï avoids backward as well as forward substitution

Which parts are easily convertible to fixed-point?
1. Initialization 3

2. Picking the pivot 3

3. Normalizing the pivot’s row (Division by the pivot) 7

4. Putting zeros in the pivot’s column (Additions and multiplication) 3

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 26/29

State of the art on matrix inversion in fixed-point arithmetic

Issues with the division operator

Consider the analytic method to invert a matrix: A−1 = com(A)T

det(A)

For a 2×2 matrix A=
(
a b

c d

)
, A−1 = 1

det(A)

(
d −b

−c a

)

Example
Let a,b,c,d ∈ [1,2]:

Suppose the format of a, b, c and d is Q3,29

Using interval arithmetic, det(A)= ad −bc ∈ [−3,3] Q3,29

Now consider the matrix M =
(
1+2−28 1

1 1

)
 det(M)= 2−28

Then what should be the format of
a

det(A)
?

Ï To avoid overflow, it should be at least Q31,1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 27/29

State of the art on matrix inversion in fixed-point arithmetic

Available works on linear algebra routines

Works that exploits simulation-based methods
Frantz et al. (2007):

Ï Decompositions investigated: SVD, Cholesky, LU and QR
Ï Matrices size: up to 30
Ï A posteriori error estimation

Irturk et al. (2006): GUSTO tool
Ï Decompositions investigated: Cholesky, LU, QR and analytic
Ï Matrices size: up to 8
Ï A posteriori error estimation

Works with proven and certified error bounds
?

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 28/29

State of the art on matrix inversion in fixed-point arithmetic

DEFIS WP3 meeting
Perpignan, July 9 th, 2013

Automated synthesis of fixed-point programs:
the case of matrix multiplication and,
some elements on matrix inversion

Amine Najahi

Advisers: M. Martel and G. Revy

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

D
A

LI

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 29/29

	DALI 2013
	Synthesizing fixed-point formulas: combinatorial and numerical issues
	Efficient matrix multiplication in fixed-point arithmetic
	State of the art on matrix inversion in fixed-point arithmetic

