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Motivation
Embedded systems are ubiquitous

Ï microprocessors and/or DSPs dedicated to one or a few specific tasks
Ï satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
Ï demanding on floating-point computations
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Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */

C[i][j]+=A[i][k]*B[k][j];
}

What makes the problem harder in fixed-point?
Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
Lee et al. (2006): 8×8 matrix-vector products for the computation of DCT’s

Ï The first matrix is constant: DCT coefficients Ï Relies on some DCT properties

Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
Ï No strict guarantee on the error bounds Ï Based on lengthy simulations
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Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic
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Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

Main idea of fixed-point arithmetic:

Ï Interpret bit packets as integers coupled with a scale factor: z ·2−n

Ï Example with z = (10000010)2 and n = 4

Fixed-point value
z ·2−4 = 23 +2−3

= 8.125

Unsigned integer
z = 27 +21 = 130

Scale factor
n = 4

 1 0 0 0 0 0 1 0

Integer part Fractional part

The scale factor (or fixed-point format) is implicit, only the programmer is aware of it

We will denote by Qa,b a fixed-point format with a integer bits and b fractional bits
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Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
For each intermediate variable ri , we store 2 intervals val(ri) and err(ri)

For each basic operator, we have rules to compute val(ri) and err(ri)

Addition:
Ï The two variables have to be in the same fixed-point format

+

l r

val(ri )= val(l)+val(r)

err(ri )= err(l)+err(r)
1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 2.65625+

1 1 1 1 0 1 1 1 7.7187
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Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)
Multiplication:

Ï The product of a Qa,b variable by a Qc,d variable yields a Qa+c,b+d variable

×

l r

val(ri )= val(l)×val(r)

err(ri )= errmul +err(l)×err(r)

+err(l)×val(r)

+val(r)×err(l)

1 0 1 0 0 0 1 0 5.0625

0 1 0 1 0 1 0 1 1.328125×

0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 6.723632812 6.625

truncated

Physical and virtual shifts:

À

l

Àv

l

val(ri )= val(l)À 2
err(ri )= errshift +err(l)À 2

val(ri )= val(l)¿ 2
err(ri )= err(l)¿ 2

0 1 1 1 0 0 1 0 3.5625

2À
0 0 0 1 1 1 0 0 0.8906251 0

truncated

0.875

0 0 0 1 1 1 0 0 0.875

2Àv

0 0 0 1 1 1 0 0 3.5
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Synthesizing fixed-point formulas: combinatorial and numerical issues

Numerical issues in dot product generation
The building block of matrix multiplication is the dot product operation

Ï Let us consider a size 3 dot product: (a0 ×b0)+ (a1 ×b1)+ (a2 ×b2)
and the following input fixed-point formats:

a0 b0 a1 b1 a2 b2

Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]

Fixed-point format Q1,7 Q1,7 Q0,8 Q1,7 Q4,4 Q2,6

Let us focus on 2 different schemes to compute the sum of products:

+

×

a0 b0

+

×

a1 b1

×

a2 b2

(c0 + (c1 +c2))

+

+

×

a0 b0

×

a1 b1

×

a2 b2

((c0 +c1)+c2)
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Synthesizing fixed-point formulas: combinatorial and numerical issues

Combinatorial issues in dot product generation

Number of dot product evaluation schemes
Given by the sequence A001147(n) in the OEIS and the formula: (2n−1)!!

Dot product size 3 5 10 16 20 · · ·
Number of schemes 3 105 34459425≈ 225 6190283353629375≈ 252 8200794532637891559375≈ 273 · · ·

Remarks
Picking a scheme that minimizes the evaluation error is one of the difficulties of
writing fixed-point code

Ï Makes it hard to write fixed-point code by hand
Ï Appeals for tools with strong heuristics to automate the process
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Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE 1 library

Initially developed by Revy and Mouilleron
Ï With the aim of generating fast and certified C code for polynomial evaluation

1. fast selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

2. certified produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>
<instruction name="add"

type="unsigned"

  <coefficient  ... >
<polynomial>

 ...
  <variable  ... > ...

</polynomial>
  <error  ... >

inputs="32 32"

</architecture>
... />
gappa="..."
macro="static inline ..."
nodes="add dag  1 ..."

output="32"
latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

Front-ends available so far: sum, dot product, univariate and bivariate polynomials

Back-ends available so far: C code, VHDL code, GAPPA certificates

1Code Generation for Polynomial Evaluation
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Efficient matrix multiplication in fixed-point arithmetic

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic
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Efficient matrix multiplication in fixed-point arithmetic

Defining the problem

Inputs:

Ï a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

cgpeGenDotProduct

Vector v of fixed-
point variables

Vector u of fixed-
point variables

C code that
evaluates u · v

Accuracy certificate

Ï 2 fixed-point matrices A and B

Output
Ï C code that evaluates the product M =A ·B in fixed-point arithmetic
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Efficient matrix multiplication in fixed-point arithmetic

Straightforward algorithms

Accurate product
Main idea: Generate a dot product
code for each coefficient of the
resulting matrix

AccurateProduct
Inputs:

Two fixed-point square matrices A and B
Outputs:

C code to compute the product AB
Steps:
1: for 1< i ≤ n do
2: for 1< j ≤ n do
3: cgpeGenDotProduct(Ai ,Bj );
4: end for
5: end for

Compact product
Main idea: Generate a unique dot
product code for all the coefficient
of the resulting matrix

CompactProduct
Inputs:

Two fixed-point square matrices A and B
Outputs:

C code to compute the product AB
Steps:
1: compute v such that v =A1 ∪A2 ∪·· ·∪An
2: compute w such that w =B1 ∪B2 ∪·· ·∪Bn
3: cgpeGenDotProduct(v ,w);
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Efficient matrix multiplication in fixed-point arithmetic

Illustration through a toy example
We consider the multiplication of the following two fixed-point matrices:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Accurate product
1. Output format of DotProduct0,0: Q26,6

2. Output format of DotProduct0,1: Q18,14

3. Output format of DotProduct1,0: Q15,17

4. Output format of DotProduct1,1: Q7,25

Certified errors bounds:(
0.03125 0.00012207

1.52588e−05 5.96046e−08

)

Average error bound: 0.00784≈ 2−7

Compact product

u =
(
[−1000,1000] [−3000,3000]

)
v =

(
[−2000,2000]

[−4000,4000]

)
1. Output format of DotProductu,v : Q26,6

Certified errors bounds:(
0.03125 0.03125

0.03125 0.03125

)

Average error bound: 0.03125≈ 2−5
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Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

Accurate product generates large code sizes (prohibitive in embedded systems)

Compact product generates 1 dot product, to the expense of numerical accuracy

But are there interesting trade-offs to look for?

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44


B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·
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a40 a41 a42 a43 a44


Compact product B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



Idea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

Given by the nth Bell number

Number of vectors 3 5 10 16 20 · · ·
Number of schemes 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·
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Efficient matrix multiplication in fixed-point arithmetic

Distances
The Hausdorff distance dH

dH : IR× IR→R

dH
(
[a,a] , [b,b]

)=max
{∣∣a−b

∣∣ ,
∣∣a−b

∣∣}
Example

Let A= [−3,1] and B = [2,4] be two intervals in I (R), we have:
∪(A,B)= [−3,4] dH(A,B)= 5

Ra1 a1 b1 b1
0 dH (A,B)

Another possible criterion

dd : IR× IR→R

dd
(
[a,a] , [b,b]

)= diam
(
[a,a]∪ [b,b]

)
Example

∪(A,B)= [−3,4] dd (A,B)= 7

Ra1 a1 b1 b1
0 dd (A,B)
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Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)
Given, a distance and a collection of vectors:

Ï we can write a routine that merges the closest pair of vectors.

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0

A1

A2

A3

A4

Closest pair: A0 and A3

A=


a′00 a′01 a′02 a′03 a′04
a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a40 a41 a42 a43 a44


A′0 =A0

⋃
A3

A1

A2

A4

Closest pair: A1 and A4

A=


a′00 a′01 a′02 a′03 a′04
a′10 a′11 a′12 a′13 a′14
a20 a21 a22 a23 a24


A′0 =A0

⋃
A3

A′1 =A1
⋃

A4

A2
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Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (2/2)
Algorithm 1 Dynamic Closest Pair algorithm
Inputs:

Two square matrices A ∈ Fixn×n and B ∈ Fixn×n

a criterion C

Outputs:
C code to compute the product AB s.t. C is satisfied

Steps:
1: S1 = {A1, . . . ,An}
2: S2 = {B1, . . . ,Bn}
3: while C is satisfied do
4: (u1,u2,du1 ,u2 )= findClosestPair(S1)
5: (v1,v2,dv1 ,v2 )= findClosestPair(S2)
6: if du1 ,u2 ≤ dv1 ,v2 then
7: remove(u1,S1); remove(u2,S1); insert(u1 ∪u2,S1)
8: else
9: remove(v1,S2); remove(v2,S2); insert(v1 ∪v2,S2)

10: end if
11: for Ai ∈S1 do
12: for Bj ∈S2 do
13: cgpeGenDotProduct(Ai ,Bj )
14: end for
15: end for
16: end while
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Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (2/2)
Algorithm 2 Dynamic Closest Pair algorithm
Inputs:

Two square matrices A ∈ Fixn×n and B ∈ Fixn×n

a criterion C : the average error bound is ≤ ε

Outputs:
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Efficient matrix multiplication in fixed-point arithmetic

Benchmarks
1. Weight matrices with dynamic range 2b n

2 c−1

2. Normally distributed random matrices (generated by matlab)
3. We took the Hadamard product of both matrices H
4. The matrices fed to the algorithm are midrad(H,1)
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Efficient matrix multiplication in fixed-point arithmetic

Results
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Efficient matrix multiplication in fixed-point arithmetic
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Efficient matrix multiplication in fixed-point arithmetic
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Efficient matrix multiplication in fixed-point arithmetic
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Efficient matrix multiplication in fixed-point arithmetic

Demo
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State of the art on matrix inversion in fixed-point arithmetic

Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic
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State of the art on matrix inversion in fixed-point arithmetic

Matrix inversion in THALES STAP benchmark
void Mat_Invert(int ntt, int nsa, Cplfloat In[ntt*nsa][ntt*nsa], Cplfloat Out[ntt*nsa][ntt*nsa]) {

double inv[nsa*ntt][2*nsa*ntt][2];
double pivot[2], coef[2];
float re, im;
int i=0, j=0, k=0, l=0;
for (i=0; i<ntt*nsa; i++) {

for (j=0; j<ntt*nsa; j++) {
inv[i][j][0] = (double) In[i][j].re; inv[i][j][1] = (double) In[i][j].im;
if (i == j) {

inv[i][j+nsa*ntt][0] =1.0; inv[i][j+nsa*ntt][1] =0.0;
} else {

inv[i][j+nsa*ntt][0]=0.0; inv[i][j+nsa*ntt][1] =0.0;
}

}
}
for (i=0; i<nsa*ntt; i++) {

pivot[0]=inv[i][i][0]; pivot[1]=inv[i][i][1];
if (pivot[0] == 0.) {

printf("\n Pivot nul re = %f , im = %f\n", pivot[0], pivot[1]);
exit(0);

}
for (j=i; j<2*nsa*ntt; j++) {

re = inv[i][j][0]; im = inv[i][j][1];
inv[i][j][0] = (re * pivot[0] + im * pivot[1])/(pivot[0] * pivot[0] + pivot[1] * pivot[1]);
inv[i][j][1] = (im * pivot[0] - re * pivot[1])/(pivot[0] * pivot[0] + pivot[1] * pivot[1]);

}
for (k=0; k<nsa*ntt; k++) {

if (i!=k) {
coef[0] = inv[k][i][0]; coef[1] = inv[k][i][1];
for (l=i; l<2*nsa*ntt; l++) {

inv[k][l][0] -= (coef[0] * inv[i][l][0] - coef[1] * inv[i][l][1]);
inv[k][l][1] -= (coef[0] * inv[i][l][1] + coef[1] * inv[i][l][0]);

}
}

}
}
for (i=0; i<nsa*ntt; i++) {

for (j=0; j<nsa*ntt; j++) {
Out[i][j].re = (float) inv[i][j+nsa*ntt][0]; Out[i][j].im = (float) inv[i][j+nsa*ntt][1];

}
}

}

1
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State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Initialization:


In0,0 In0,1 · · · In0,n−1 1 · · · · · · 0
In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1
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State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Picking the
pivot


In0,0 In0,1 · · · In0,n−1 1 · · · · · · 0
In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1
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State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Normalizing
the pivot’s row



1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

In1,0 In1,1 · · · In1,n−1 0 1 · · · 0

.

.

.

.

.

.

.
.
.

.

.

. 0
.
.
.

.
.
. 0

Inn−1,0 Inn−1,1 · · · Inn−1,n−1 0 · · · · · · 1
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State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 1: Putting zeros
in the pivot’s column



1
In0,1
In0,0

· · · In0,n−1
In0,0

1
In0,0

· · · · · · 0

0 In1,1 − In1,0
In0,1
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· · · In1,n−1 − In1,0
In0,n−1

In0,0
0 1 · · · 0
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In0,0
0 · · · · · · 1
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State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Step 2: Picking the
pivot



1
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In0,0

1
In0,0

· · · · · · 0
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State of the art on matrix inversion in fixed-point arithmetic

Some remarks on this implementation

It is based on row reduction

The implementation is optimized

Computes the inverse in place
Ï avoids backward as well as forward substitution

Which parts are easily convertible to fixed-point?
1. Initialization 3

2. Picking the pivot 3

3. Normalizing the pivot’s row (Division by the pivot) 7

4. Putting zeros in the pivot’s column (Additions and multiplication) 3
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State of the art on matrix inversion in fixed-point arithmetic

Issues with the division operator

Consider the analytic method to invert a matrix: A−1 = com(A)T

det(A)

For a 2×2 matrix A=
(
a b

c d

)
, A−1 = 1

det(A)

(
d −b

−c a

)

Example
Let a,b,c,d ∈ [1,2]:

Suppose the format of a, b, c and d is Q3,29

Using interval arithmetic, det(A)= ad −bc ∈ [−3,3] Q3,29

Now consider the matrix M =
(
1+2−28 1

1 1

)
 det(M)= 2−28

Then what should be the format of
a

det(A)
?

Ï To avoid overflow, it should be at least Q31,1
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State of the art on matrix inversion in fixed-point arithmetic

Available works on linear algebra routines

Works that exploits simulation-based methods
Frantz et al. (2007):

Ï Decompositions investigated: SVD, Cholesky, LU and QR
Ï Matrices size: up to 30
Ï A posteriori error estimation

Irturk et al. (2006): GUSTO tool
Ï Decompositions investigated: Cholesky, LU, QR and analytic
Ï Matrices size: up to 8
Ï A posteriori error estimation

Works with proven and certified error bounds
?
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State of the art on matrix inversion in fixed-point arithmetic
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