DEFIS WP3 meeting
Perpignan, July 9 ", 2013

Automated synthesis of fixed-point programs:

. the case of matrix multiplication and,
some elements on matrix inversion

Amine Najahi
Advisers: M. Martel and G. Revy

Equipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

= Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

.E —_—

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

= Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

.E —_—

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

= Some embedded systems do not have any FPU (floating-point unit)

Applications

Software implementing
floating—point arithmetic

Embedded systems

i —

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

= Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems \ ConverSIOH
. =] ¢

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

BN
Matrix multiplication

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main()
int i,3,k;
float A[N][N]={...}, B[N][N]={...}, CI[N][N]={0,...,0};
for (i = 0; 1 < N ; i++4)
for (3 = 0; j <N ; j++)
for (k = 0; k < N ; kt+) /* This inner loop computes the dot product of row i and column j */
i Clil[31+=A[i][k]*B[k][]];

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

BN
Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main ()
ki
fl t A[N][1=(. .}, B[N][N]:(Au}. CIN][N]={0,..., 0};
for (i = i<y poit)
)r (j=0'j<N;j++)
for (k = 0; k < N ; k++) /* This inner loop computes the dot product of row i and column j */
Clil[31+=A[i][k]*B[k][]];
}

What makes the problem harder in fixed-point?

B Intermediate computations depend on the input variables range and computation scheme

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

BN
Matrix multiplication

With the floating-point arithmetic, it is very easy to program !!

int main ()
int 1,3,
float A[N][1=(. .}, B[N][N]:(Au). CIN][N]={0,..., 0};
nr (i = i< N ++)
)v(]=0'j<N;]++)
for (k = 0; k < N ; k++) * This inner loop computes the dot product of row i and column j */
i Clil[31+=A[i][k]*B[k][]];

What makes the problem harder in fixed-point?

B Intermediate computations depend on the input variables range and computation scheme

Some works on linear algebra primitives in fixed-point
m Lee et al. (2006): 8 x 8 matrix-vector products for the computation of DCT's

> The first matrix is constant: DCT coefficients > Relies on some DCT properties

m Frantz et al. (2007): linear algebra routines (mostly matrix inversion) based on simulation
> No strict guarantee on the error bounds > Based on lengthy simulations

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

.
Outline of the talk

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

2. Efficient matrix multiplication in fixed-point arithmetic

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

1. Synthesizing fixed-point formulas: combinatorial and numerical issues

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

=m Main idea of fixed-point arithmetic:

> Interpret bit packets as integers coupled with a scale factor: z-27"

> Example with z=(10000010), and n=4

e —
Unsigned integer ‘ Scale factor
z=2"+2"=130 n=4

R L+]ofofofofof1]o]

Integer part Fractional part

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

=m Main idea of fixed-point arithmetic:
> Interpret bit packets as integers coupled with a scale factor: z-27"
> Example with z=(10000010), and n=4
(" Unsigned integer | ‘ Scale factor |
z=2"+2"=130 J L)
- [+]ofofofofof1]o]

Integer part Fractional part

AThe scale factor (or fixed-point format) is implicit, only the programmer is aware of it

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

Background on fixed-point arithmetic

=m Main idea of fixed-point arithmetic:
> Interpret bit packets as integers coupled with a scale factor: z-27"

» Example with z=(10000010), and n=4

(" Unsigned integer | ‘ Scale factor |

| z=2"+2"=130) n=4)
- [1[ofofo]ofo]1]o]

Fixed-point value Integer part Fractional part
z.274=284273

=8.125

AThe scale factor (or fixed-point format) is implicit, only the programmer is aware of it

m We will denote by Q5 a fixed-point format with a integer bits and b fractional bits

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
m For each intermediate variable r;, we store 2 intervals val(r;) and err(r;)
m For each basic operator, we have rules to compute val(r;) and err(r;)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Fixed-point arithmetic model (1/2)

Arithmetic model to track errors in fixed-point computations
m For each intermediate variable r;, we store 2 intervals val(r;) and err(r;)
m For each basic operator, we have rules to compute val(r;) and err(r;)

m Addition:
> The two variables have to be in the same fixed-point format

[1o]1]oJoJo[1]o] 5.0625
+ [o]1]o]1]o[1]o]1] 2.65625
O ATo[A4] 7.7187

val(l) + val(r)
(1) +err(r)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)

m Multiplication:
> The product of a Q4 p variable by a Qg ¢ variable yields a Qa4.¢,p+ g Variable

truncated
val(r;) = val(1) x val(r) [1JoJ1]oJoJo]1]0] 5.0625
orr(1;) = ertyy + err(1) x err(r,
err(1) x val(r)
Fval(r) x err(l) X [0]1]o[1]o]1]0]1] 1.328125
[0Jo[1T4To[1Jo1]1 1 "0'0' 10 1 0! 6.723632812 6.625

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

Fixed-point arithmetic model (2/2)

m Multiplication:
> The product of a Q4 p variable by a Qg ¢ variable yields a Qa4.¢,p+ g Variable

truncated
val(r;) = val(1) x val(r) [1JoJ1]oJoJo]1]0] 5.0625
orr(1;) = ety + err(1) x err(r)
err(l) x val(r)
e x [0]1]o[1]0]1]0]7] 1.328125
[oo[T4To] o] 100! 10 1 0! 6.723632812 6.625
m Physical and virtual shifts:
vq/(r) val(l) > val(rj) =
err(r;) = errep ,, verr(l)>2 en(r) =
truncated
[o[1T4]1]0J0[1]0] 3.5625 [0ToTo]1T1T1]0]0] 0.875
2 >y 2
[0Tofo[1[[1[0l0] 1’0" 0.890625 0.875 [oToTo[1T1]1]0T0] 35

Automated synthesis of fixed-point programs: the case of matrix multiplication

A. Najahi

val(l) < 2

err(l) <2

Numerical issues in dot product generation

m The building block of matrix multiplication is the dot product operation

> Let us consider a size 3 dot product: (ag x bg) + (a1 x by) +(az x ba)
and the following input fixed-point formats:

ap bo a by ap by
Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]
Fixed-point format Q17 Q17 Qo,8 Q1,7 Qa4 Qe

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Numerical issues in dot product generation

m The building block of matrix multiplication is the dot product operation

> Let us consider a size 3 dot product: (ag x bg) + (a1 x by) +(az x ba)
and the following input fixed-point formats:

ap bo a by ap by
Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]
Fixed-point format Q17 Q17 Qo,8 Q1,7 Qa4 Qe

m Let us focus on 2 different schemes to compute the sum of products:

in full
precision

(co + (01 +2)) ((co+c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Numerical issues in dot product generation

m The building block of matrix multiplication is the dot product operation

> Let us consider a size 3 dot product: (ag x bg) + (a1 x by) +(az x ba)
and the following input fixed-point formats:

ap bo a by ap by
Value [0.1,1.57] [0,1.98] [0.01,0.87] [1.1,1.86] [0,15.4] [2,3.3]
Fixed-point format Q17 Q17 Qo,8 Q1,7 Qa4 Qe

m Let us focus on 2 different schemes to compute the sum of products:

with 16 bits
precision

(co + (01 +2)) ((co+c1)+c2)

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Combinatorial issues in dot product generation

Number of dot product evaluation schemes
m Given by the sequence A001147(n) in the OEIS and the formula: (2n—1)!!

Dot product size 10 16 20
Number of schemes | 3 | 105 | 34459425~ 225 | 6190283353629375 ~ 2% | 8200794532637891559375 ~ 273

w
o

Remarks
m Picking a scheme that minimizes the evaluation error is one of the difficulties of
writing fixed-point code
> Makes it hard to write fixed-point code by hand
> Appeals for tools with strong heuristics to automate the process

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE ' library

m Initially developed by Revy and Mouilleron
> With the aim of generating fast and certified C code for polynomial evaluation

polynomial xml

1. fast ~» selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

<polynomia>
. <codficent .. >
DAG computation Cuariable ...>

front-end

Serror >
<polynonia>
Set of DAGs

architecture.xml
<architecure>

@

middle-end

Slachicire:

2. certified ~~ produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Decorated DAGs

generator

back-end

1Code Generation for Polynomial Evaluation

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Synthesizing fixed-point formulas: combinatorial and numerical issues

The CGPE ' library

m Initially developed by Revy and Mouilleron
> With the aim of generating fast and certified C code for polynomial evaluation

polynomial xml

1. fast ~» selects schemes that reduce
the evaluation latency on a given target,
by using (as much as possible) the
architectural features

<polynomia>
. <codficent .. >
DAG computation Cuariable ...>

front-end

Serror >
<polynonia>
Set of DAGs

architecture.xml
<architecure>

@

middle-end

Slachicire:

2. certified ~~ produces a bound on the error
entailed by the evaluation within the given
target’s arithmetic

Decorated DAGs

Code generator

back-end

m Front-ends available so far: sum, dot product, univariate and bivariate polynomials
m Back-ends available so far: C code, VHDL code, GAPPA certificates

1Code Generation for Polynomial Evaluation

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Outline of the talk

2. Efficient matrix multiplication in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Defining the problem

= Inputs:

> a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

Vector u of fixe C code that
point variables evaluates u-v

cgpeGenDotProduct

Accuracy certificate

Vector v of fi
point variables

> 2 fixed-point matrices A and B

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Defining the problem

= Inputs:

> a black box (CGPE) that synthesises code for dot products in fixed-point arithmetic

Vector u of C code that
point variables evaluates

cgpeGenDotProduct

Accuracy certificate

Vector v of
point variables

> 2 fixed-point matrices A and B

= Output
> C code that evaluates the product M = A- B in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Straightforward algorithms

Accurate product

® Main idea: Generate a dot product
code for each coefficient of the
resulting matrix

Compact product

m Main idea: Generate a unique dot
product code for all the coefficient
of the resulting matrix

AccurateProduct
Inputs: CompactProduct
Two fixed-point square matrices A and B Inputs:
Outputs: Two fixed-point square matrices A and B
C code to compute the product AB Outputs:
Steps: C code to compute the product AB
1: for1<i<ndo Steps:
2: for1<j=ndo 1: compute v such that v=A{ UAs U---UAp
3: cgpeGenDotProduct(A;, B;); 2: compute w such that w =B UBo U---U B,
4: end for 3: cgpeGenDotProduct(v, w);
5: end for

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

lllustration through a toy example

We consider the multiplication of the following two fixed-point matrices:

_ {[-1000,1000] ~ [-3000,3000] and B [-2000,2000] [-2,2]
[-1,1] [-1,1] [-4000,4000] [-10,10]

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

lllustration through a toy example

We consider the multiplication of the following two fixed-point matrices:

[~1000, 1000] [—3000,3000]) ([—2000,2000] [-2,2])
= and B=
[-1,1] [-1,1] [-4000,4000] [-10,10]

Accurate product Compact product

1. Output format of DotProducty o: Qop,6 u= ([—1000, 1000] [—3000,3000])

2. Output format of DotProducty 1: Qig,14 [_2000 2000]
3. Output format of DotProducty o: Q15,17 = ([_4000 4000])
4)

. Output format of DotProduct; 1 :
s 11: Qr.2s 1. Output format of DotProducty,,: Qoee

m Certified errors bounds: m Certified errors bounds:

0.03125 0.00012207) 0.03125 0.03125
1.52588e—05 5.96046e— 08 0.03125 0.03125

. _n—7
W Average error bound: 0.00784 =2 m Average error bound: 0.03125 ~ 25

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs

Remarks
m Accurate product generates large code sizes (prohibitive in embedded systems)
m Compact product generates 1 dot product, to the expense of numerical accuracy

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs

Remarks
m Accurate product generates large code sizes (prohibitive in embedded systems)
m Compact product generates 1 dot product, to the expense of numerical accuracy
m But are there interesting trade-offs to look for?

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

m Accurate product generates large code sizes (prohibitive in embedded systems)

m Compact product generates 1 dot product, to the expense of numerical accuracy

m But are there interesting trade-offs to look for?

(30 a1 42 403 a04)
(@10 a1 a2 a3 as)
A=|(220 1 3> a3 ax)
(@0 a1 a2 a3z a4)
(30 341 asp a3 ass)

boo | [bo1
bio | |b11
Accurate product B=| |bog| |b21
b3g | | b3t
bag | | bat

A. Najahi

Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs
Remarks

m Accurate product generates large code sizes (prohibitive in embedded systems)

m Compact product generates 1 dot product, to the expense of numerical accuracy

m But are there interesting trade-offs to look for?

400
210
A=||agg
a30
240

401
2
|
&
M

a02
42
a2
&3]
a42

403
a3
a3
a33
243

a4
as
a4
a3
244

boo bo1 bo2
bjg by1 by2
Compact product B=| b bot b2
bgo b31 bz
bgo ba1 by

bo3
b3
bog
b33
b43

A. Najahi

Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs

Remarks
m Accurate product generates large code sizes (prohibitive in embedded systems)
m Compact product generates 1 dot product, to the expense of numerical accuracy
m But are there interesting trade-offs to look for?
[’*oo a1 a2 403 ao4j
a10 a1 a2 a3 a4
A=|(320 a1 3o a3 du) B=

(30 a1 a2 a3z a4)
(340 a1 a2 a3 aus)

m |dea: Merge certain rows/columns to reduce the number of the generated dot products

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Looking for trade-offs

Remarks
m Accurate product generates large code sizes (prohibitive in embedded systems)
m Compact product generates 1 dot product, to the expense of numerical accuracy
m But are there interesting trade-offs to look for?

a0 a1 42 a3 44
a0 a1 ap a;g ay

A=|(320 a1 3o a3 du) B=
(30 a1 a2 a3z a4)
(340 a1 a2 a3 aus)

m |dea: Merge certain rows/columns to reduce the number of the generated dot products

Number of ways to merge n vectors

m Given by the n Bell number

Number of vectors | 3 | 5 10 16 20
Number of schemes | 5 | 52 | 115975 ~2'7 | 10480142147 =~ 2% | 51724158235372 ~ 246

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Distances

The Hausdorff distance dy

dy IR X IR — R B
dy ([a.@],[b,b]) = max{|a—b|,|a—bl|}

Example
Let A=[-3,1] and B = [2,4] be two intervals in /(R), we have:
m U(AB)=[-3,4] m dy(AB)=5
Z . m o w . w a
: : 5 : | dy(A,B) '

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Distances

The Hausdorff distance dy
Oy IR X IR — R 3
(123, 1b,b]) = max {|a—b][a-B]}

Example
Let A=[-3,1] and B = [2,4] be two intervals in /(R), we have:
® U(AB)=[-34] m dy(AB)=5
NI S ‘ N .] . b ®
' ‘ : : " : | d(AB) ‘

Another possible criterion
dy IR IR — R

dy (123, [b, b)) = diam (23] U [b, B])
Example

= U(AB)=[-3,4] = dy(AB)=7

- N S B

4
t

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Closest pair strategy (1/2)

m Given, a distance and a collection of vectors:
> we can write a routine that merges the closest pair of vectors.

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Closest pair strategy (1/2)

m Given, a distance and a collection of vectors:
> we can write a routine that merges the closest pair of vectors.

(300 21 302 203 04)) Ay
(@0 a1 a2 a3 a14)| A
A=[(a0 a1 a2 a3 a4)| A
(330 331 a3 a3 d4)| Ag
(340 a1 2 3 a4)/ A,

Closest pair: Ag and Az

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Closest pair strategy (1/2)

m Given, a distance and a collection of vectors:
> we can write a routine that merges the closest pair of vectors.

(300 21 302 203 04)) Ay
(@0 a1 a2 a3 a14)| A
A=[(a0 a1 a2 a3 a4)| A
(330 331 a3 a3 d4)| Ag
(340 a1 2 3 a4)/ A,

Closest pair: Ag and Az

/o

a .\ a a a,. a Al = AgUAg
ae (1o a1 a2 a3 a14) | 4
(320 a1 ap a3 aa)| A
(340 a1 a3 @)/ a,

Closest pair: A and Ag.

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Closest pair strategy (1/2)

m Given, a distance and a collection of vectors:
> we can write a routine that merges the closest pair of vectors.

(30 41 a2 a3 ap4)
(@0 a1 a2 a3 ai4)
A=|(30 a1 a2 a3 au)
(a0 a31 a2 a3z ag4)
(30 @41 asp as3 ass)
Closest pair: Ag and Az
CAE al a. a
Ao @021 32 a3 319)
(320 a1 ap a3 a)
(a0 a1 asp a3 ass)
Closest pair: A and Ag.
a/ af af af a’
T T T T T
A=|@Eg @y d, a5 dy
(320 a1 a2 a3 a4)

Ao
Aq
A2
A3
Ay

Ay =AgUA3
Ay
A2
Ay

Ay =AgUA3
Al = AfUA,
A2

A. Najahi

Automated synthesis of fixed-point programs: the case of matrix multiplication

Closest pair strategy (2/2)

Algorithm 1 Dynamic Closest Pair algorithm
Inputs:
Two square matrices A€ Fix™* ™ and B e Fix"*"
a criterion €
Outputs:
C code to compute the product AB s.t. € is satisfied
Steps:
10 A =1A1, ..., An}
2: S =1{By,...,Bn}
3: while € is satlsﬂed do
4: (uy,up,dyy,up) = findClosestPair(#)
5. (w1,v2,dv,v,) = findClosestPair(#2)
6: if dyy,up < duy,vp then
7
8

remove(uy, %); remove(ua, 1); insert(uq U U, 1)

: else
9: remove(vq,5%); remove(va, 2); insert(vy U vo, %)
10: end if
11: for Aj€ % do
12 for Bje #, do
13: cgpeGenDotProduct(A;, B;)
14: end for
15: end for
16: end while

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Closest pair strategy (2/2)

Algorithm 2 Dynamic Closest Pair algorithm
Inputs:
Two square matrices A€ Fix™* ™ and B e Fix"*"
a criterion €¢: the average error bound is < ¢
Outputs:
C code to compute the product AB s.t. € is satisfied
Steps:
10 A ={A1,...,An}
2: S =1{By,...,Bn}
3: while average error < ¢ do
4: (uy,up,dyy,up) = findClosestPair(#)
5. (w1,v2,dv v,) = findClosestPair(#2)
6: if dyy,up < duy,vp then
7:
8

remove(uy, %); remove(ua, 1); insert(uq U U, 1)

: else
9: remove(vq,5%); remove(va, 2); insert(vy U vo, %)
10: end if
11: for Aj€ % do
12 for Bje #, do
13: cgpeGenDotProduct(A;, B;)
14: end for
15: end for
16: end while

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Efficient matrix multiplication in fixed-point arithmetic

Benchmarks

1. Weight matrices with dynamic range 2lzl-1

2. Normally distributed random matrices (generated by matlab)
3. We took the Hadamard product of both matrices H

4. The matrices fed to the algorithm are midrad(H,1)

- i

Vvlv/_=zmax(r,/',nfifr,NfF])’ln/Zj — :- i Edges

WM:2mrn(:,/',n—1—:,n—1—/) = J 1 Center
- [] l
= 1

w;j=2fendon/a=n =] B o Random

-
- - e}
- e

W =22 =]] Rows
w w om T

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

arithmetic

ient matrix mult

Results

700
Random pair Algorithm —+—
Best pair Algorithm -~
600 -
“ Center Benchmark
500 - \ !
©°
Q
38 B
‘g 1
3 400 N
<}
Q \
5 i
o \
5 300 |
5 |
Q \
€ \
3 \
200 |
100
0 ! ! f e .
>18 >17 >16 >15 14 13 12

Average precision bound

A. Najahi is of fixed-point programs: the case of matrix multiplicati

Efficient matrix multiplication in

Results

Number of dot product codes

fixed-point arithmetic

700

600 -

500 -

200 -

100

Random pair Algorithm —+—
Best pair Algorithm - <~

Edges Benchmark

A. Najahi

> 12 o1
Average precision bound

is of fixed-point program:

the case of matrix multiplicati

2—9

ient matrix mult arithmetic

Results

700

Random pair Algorithm —+—
Best pair Algorithm - <~

600

Random Benchmark
500

400 -

300 -

Number of dot product codes

200 -

516 15 o 14 13 >12 o1
Average precision bound

A. Najahi is of fixed-point programs: the case of matrix multiplicati

ient matrix mult

Results

700

Random pair Algorithm —+—
Best pair Algorithm - <~

600 -

Rows/Columns Benchmark

400 - |

Number of dot product codes

200 -

2—17 2—16 2—1 5 2—14 2—13 2—1 2 2—1 1 2—1 0

Average precision bound

A. Najahi

is of fixed-point programs: the case of matrix multiplicati

Efficient matrix multiplicat arithmetic

Demo

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Outline of the talk

3. State of the art on matrix inversion in fixed-point arithmetic

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Matrix inversion in THALES STAP benchmark

d Mat_Invert (int ntt, int nsa, Cplfloat In[ntt*nsallntt*nsal, Cplfloat Out[ntt*nsallntt*nsal) {
double inv[nsa*ntt][2*nsa*ntt][2];
double pivot[2], coef[2];

float re, im;

int i=0, j=0, k=0, 1=0;

for (i=0; i<ntt*nsa; i++) {

for i Jj<ntt*nsa; Jj++) {
inv[i1[j1[0] = (double) In[i][j].re; inv[i][jI[1] = (double) In[i][]].im;
if (1 == 3) {
inv[i][j+nsa*ntt][0] =1.0; inv([i][j+nsa*ntt][1] =0.0;
} else {

inv[i][j+nsa*ntt][0]=0.0; inv[i][j+nsa*ntt][1] =0.0;
}
}

1
for (i=0; i<nsa*ntt; i++) { —

plvot[opmv[l][l][o], pivot [1]=inv[i][i][1]; 5 >
if (pivot [0] == 0. L]
printf ("\n PlVOt nul re = %f , im = %f\n", pivot[0], pivot[l]); g 'Q.La'
exit (0); S| 83
} 3|8+
for (§=ij j<2*nsa*ntt; j++) { Clg =
re inv([i][31[0]; im = inv([i][]](1]; g <o
inv[i][§]1[0] = (re * pivot([0] + im * pivot[1])/(pivot[0] * pivot [0] + pivot[l] * pivot[1]) S 3
inv[il[j1[1] = (im * pivot[0] - re * pivot([l])/(pivot[0] * pivot[0] + pivot[l] * pivot[l]); E [
} 3 =
for i k<nsa*ntt; ki) { 2 23

if (i!=k) (‘_lz

coef [0] = inv[k][i][0]; coef[l] = inv[k][i][1l]; o | =

for (l=i; 1<2*nsa*ntt; l++) { = |0 »
inv (k] [1][0] -= (coef[0] * inv[i][1][0] - coef[l] * inv[i][1][1]); s |38
vik]l[1l -= (coef[0] * inv[i][1][1] + coef[l] * inv[i][1][0]) 5 o =
3 3
,@,@

i<nsa*ntt; i++) {
o 5 j<nsa*ntt; j++) {
Out[i][j]l.re = (float) inv([i][j+nsa*ntt][0]); Out([i][j].im = (float) inv[i][j+nsa*ntt][1];

no ul
Buikdon

A. Najahi i oint programs: the case of matrix multiplicati

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Ino‘o In0y1 ’"0,n—1 1 0
In1,0 Iy Mg 101 0
Initialization: 0 R

Inp_1,0 Ip—1,1 0 Ip_qpq | O e

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

Ing 1 Ing, p—1 1 e e 0

. . In- In- Ing 0 1 0

Step 1: Picking the 1,0 1,1 1,n-1 .
pivot : : : . .
Np_10 Ip—11 v dpeqpg | 0 e e 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

The algorithm step by step

Step 1: Normalizing Ingq - Ingpq 0 1 e 0
the pivot’s row : : : o o
Inp—10 Ip—14 - Ip—q1,n1 0 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

D) Ing, Ino,n—1. 1 .o
Ino’o

Ino’o Ino,o
- i 0 Ing 4 —In. Ino,1 In —In 70,11 0 1 e 0
Step 1: Putting zeros 11710 g’y 1,0=1~1"1,0 705
in the pivot’s column . .
. Ing,1 . Ing,n—1
0 Inp—1g=Ip-107pyy 1n=1,0-17 11,0 Ty 5 1

A. Najahi

Automated synthesis of fixed-point programs: the case of matrix multiplication

State of the art on matrix inversion in fixed-point arithmetic

The algorithm step by step

; Ing, 1 Ino,n—1 1 e 0
Tng,q Ino,o ; Ing,0

10,1 M0,n—1
L 0 Ing 4 —=Iny o~ Iny p—q —Inq S 0 1 - 0

Step 2: Picking the * 0700 n 0 g0
pivot : f : o o

Ing,1 Ing,n—1

O 11 =Mn10myy 7 -1,0-1 711,07y o 0 1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Some remarks on this implementation

m ltis based on row reduction
m The implementation is optimized
m Computes the inverse in place
> avoids backward as well as forward substitution

Which parts are easily convertible to fixed-point?
1. Initialization v/
2. Picking the pivot v/
3. Normalizing the pivot’s row (Division by the pivot) X
4. Putting zeros in the pivot’s column (Additions and multiplication) v/

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Issues with the division operator

com(A)"

= Consider the analytic method to invert a matrix: A~" =
y det(A)

. a bl , 1 (d -b
m Fora2x2matrix A= VAT =
c d det(A) —-c a

Example
Letab,c,d€[1,2]:
m Suppose the format of a, b, ¢ and d is Qs 29
m Using interval arithmetic, det(A) = ad — bc € [-3,3] ~~ Q3 29

_ _ 142728 1 g
m Now consider the matrix M =] | det(M)=2

a
m Then what should be the format of ———?
det(A)

> To avoid overflow, it should be at least Q31,1

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

Available works on linear algebra routines

Works that exploits simulation-based methods

m Frantz et al. (2007):
> Decompositions investigated: SVD, Cholesky, LU and QR
> Matrices size: up to 30
> A posteriori error estimation

m Irturk et al. (2006): GUSTO tool

> Decompositions investigated: Cholesky, LU, QR and analytic
> Matrices size: up to 8
> A posteriori error estimation

Works with proven and certified error bounds

m?

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication

State of the art on matrix inversion in fixed-point arithmetic

DEFIS WP3 meeting
Perpignan, July 9 ", 2013

Automated synthesis of fixed-point programs:

. the case of matrix multiplication and,
some elements on matrix inversion

Amine Najahi
Advisers: M. Martel and G. Revy

Equipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

A. Najahi Automated synthesis of fixed-point programs: the case of matrix multiplication 29/29

	DALI 2013
	Synthesizing fixed-point formulas: combinatorial and numerical issues
	Efficient matrix multiplication in fixed-point arithmetic
	State of the art on matrix inversion in fixed-point arithmetic

