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Summary
Context and objectives

Automated synthesis of fixed-point programs
→ particular case of linear algebra basic blocks
→ work done within the french ANR DEFIS project (http://defis.lip6.fr)
→ targeting critical systems

Tight code size
→ targets embedded systems and FPGAs: constrained in terms of chip area

Certified accuracy bounds using analytic approaches
→ contrarily to simulation based approaches

Achievements

1. Novel trade-off algorithm for the synthesis of matrix multiplication
→ up to 50% code size reduction while satisfying the accuracy criterion

2. Approach for the synthesis of matrix inversion based on Cholesky decomposition
→ code synthesis for 40×40 triangular matrix inversion in few seconds
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A strategy to achieve matrix inversion

Let M be a symmetric positive definite matrix of fixed-point variables. To generate
certified code that inverts M, one needs to:

Generate code to compute B a lower triangular s.t. M =B ·BT .

Generate code to compute N =B−1.

Generate code to compute M−1 =NT ·N.

The basic blocks we need to include in our tool-chain
Fixed-point code synthesis for matrix multiplication.

Fixed-point code synthesis for triangular matrix inversion.

Fixed-point code synthesis for Cholesky decomposition.
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Outline of the talk

1. Our fixed-point arithmetic model

2. A novel tradeoff algorithm for code synthesis for matrix multiplication

3. Toward code synthesis for matrix inversion

4. Concluding remarks and future work
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Our fixed-point arithmetic model

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

1. X the k -bit integer representation of x

2. f the implicit scaling factor of x
X7 X6 X5 X4 X3 X2 X1 X0

i = 3 f = 5

k = 8

The value of x is given by x =X ·2−f

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format.

Example:
If x is in the format Q3.5 with X = (10011010)2 = (154)10:

x = (100.11010)2 = (4.8125)10

A fixed-point variable v in Q3.5 holds values in the discrete interval [0,7.96875]
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Our fixed-point arithmetic model

Fixed-point arithmetic model

Arithmetic model to track errors in fixed-point computations
For each variable v , we keep track of 3 intervals Math(v), Val(v) and Err(v).

Ï They are related by the formula Err(v)=Math(v)−Val(v).

For each basic operator, we have a rule that propagates these intervals.

Propagation rules for +,× and À
+

v1 v2

Val(v)=Val(v1)+Val(v2)

Err(v)=Err(v1)+Err(v2)

×

v1 v2

Val(v)=Val(v1)×Val(v2)

Err(v)=Err×+Err(v1)×Err(v2)

+Err(v2)×Val(v1)

+Val(v1)×Err(v2)

À

v1

Val(v)=Val(v1)Àα

Err(v)=Err(v1)+ErrÀ
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Our fixed-point arithmetic model

The CGPE software tool

CGPE: a library to automate the synthesis of fast and certified fixed-point code

Ï optimized for polynomial evaluation code synthesis
Ï but also for summation and dot-product expressions

We use CGPE as a backend to synthesize code for linear algebra basic block

CGPE is freely available for download under CeCILL v2 licence

http://cgpe.gforge.inria.fr/
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Our fixed-point arithmetic model

Focus on the CGPE software tool

Architecture of CGPE ≈ architecture of a compiler

1. Computation step front-end
Ï computes schemes reducing the

evaluation latency on unbounded
parallelism DAG

Ï considers only the cost of ⊕ and ⊗

2. Filtering step middle-end
Ï prunes the DAGs that do not satisfy

different criteria:
• latency scheduling filter,
• accuracy numerical filter, ...

3. Generation step back-end
Ï generates C codes and Gappa

accuracy certificates

Set of DAGs

Decorated DAGs
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<architecture>

<instruction name="add"
type="unsigned"

nodes="add dag  1 ..."
macro="static inline ..."
gappa="..."
...

  <coefficient  ... >

  <variable  ... >
 ...

</polynomial>
 ...

</architecture>

<polynomial>

latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files
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A novel tradeoff algorithm for code synthesis for matrix multiplication
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Similar works

Previous works on linear algebra primitives in fixed-point
Lee et al. (2006): Accuracy-Guaranteed Bit-Width Optimization.

Frantz et al. (2007): Design and Implementation of Numerical Linear Algebra
Algorithms on Fixed Point DSPs.

Recurring problems with existing works
The tools are not available.

Only toys examples are treated.

Code generation is slow and is based on simulation.

Numerical accuracy is estimated a posteriori by comparing to floating-point.

A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Code synthesis for linear algebra basic blocks in fixed-point arithmetic 11/36



A novel tradeoff algorithm for code synthesis for matrix multiplication

Statement of the problem

Inputs
Two matrices A and B of interval fixed-point variables

A ∈ Fixm×n and B ∈ Fixn×p

A bound C1 on the roundoff error

A bound C2 on the code size

Output
Fixed-point code (C, VHDL, ...) that evaluates the product

C′ =A′ ·B′, where A′ ∈A and B′ ∈B

that satisfy both C1 and C2

Accuracy certificate (verifiable by a formal proof checker)
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A novel tradeoff algorithm for code synthesis for matrix multiplication

How to implement matrix multiplication?

Using floating-point numbers (C like syntax)

int main()
{

int i,j,k;
float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};
for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)
for (k = 0; k < N ; k++)

C[i][j]+=A[i][k]*B[k][j]; /* This inner loop computes the dot-product of row i and column j */
}

What makes the problem harder in fixed-point?

Intermediate computations depend on the input variables range and computation scheme

Contrarily to the floating-point arithmetic, the programmer is in charge of:
Ï overflow prevention, alignments, optimization of integer part lengths

 requires the estimation of the dynamic range of intermediate variables
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Straightforward algorithms

Accurate algorithm
Main idea: a dot product code for
each coefficient of the resulting
matrix

Accurate algorithm
Inputs:

Two matrices A ∈ Fixm×n and B ∈ Fixn×p

Outputs:
C code to compute the product A ·B
m ·p accuracy certificates

Steps:
1: for 1< i ≤m do
2: for 1< j ≤ p do
3: DPSynthesis(Ai ,:,B:,j )
4: end for
5: end for
6: Check C1 and C2

Compact algorithm
Main idea: a unique dot product
code for all the coefficient of the
resulting matrix

Compact algorithm
Inputs:

Two matrices A ∈ Fixm×n and B ∈ Fixn×p

Outputs:
C code to compute the product A ·B
1 accuracy certificate

Steps:
1: U =A1,:∪A2,:∪·· ·∪Am,:, with U ∈ Fix1×n

2: V =B:,1 ∪B:,2 ∪·· ·∪B:,p , with V ∈ Fixn×1

3: DPSynthesis(U ,V )
4: Check C1 and C2
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Illustration through a toy example

Consider the product of the following two fixed-point matrices:

A=
(
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]

)
and B =

(
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

)

Coefficient A1,1 A1,2 A2,1 A2,2 B1,1 B1,2 B2,1 B2,2

Fixed-point format Q11.21 Q12.20 Q2.30 Q2.30 Q11.21 Q3.29 Q2.30 Q5.27

Accurate algorithm
Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCode1,1 DPCode1,2 DPCode2,1 DPCode2,2

Output format Q26,6 Q18,14 Q15,17 Q7,25

Certified error ≈ 2−5 ≈ 2−14 ≈ 2−16 ≈ 2−24

Maximum error ≈ 2−5

Average error ≈ 2−7

Compact algorithm
Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCodeU ,V

Output format Q26,6

Certified error ≈ 2−5

Maximum error ≈ 2−5

Average error ≈ 2−5
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Tradeoff algorithms

A=



a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44



A0:

A1:

A2:

A3:

A4:

Accurate algorithm:

(25 dot-product codes)

B =



b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44



B:0

B:1

B:2

B:3

B:4

C =A ·B =



DPCode0,0(A0,: ,B:,0) DPCode0,1(A0,: ,B:,1) DPCode0,2(A0,: ,B:,2) DPCode0,3(A0,: ,B:,3) DPCode0,4(A0,: ,B:,4)

DPCode1,0(A1,: ,B:,0) DPCode1,1(A1,: ,B:,1) DPCode1,2(A1,: ,B:,2) DPCode1,3(A1,: ,B:,3) DPCode1,4(A1,: ,B:,4)

DPCode2,0(A2,: ,B:,0) DPCode2,1(A2,: ,B:,1) DPCode2,2(A2,: ,B:,2) DPCode2,3(A2,: ,B:,3) DPCode2,4(A2,: ,B:,4)

DPCode3,0(A3,: ,B:,0) DPCode3,1(A3,: ,B:,1) DPCode3,2(A3,: ,B:,2) DPCode3,3(A3,: ,B:,3) DPCode3,4(A3,: ,B:,4)

DPCode4,0(A4,: ,B:,0) DPCode4,1(A4,: ,B:,1) DPCode4,2(A4,: ,B:,2) DPCode4,3(A4,: ,B:,3) DPCode4,4(A4,: ,B:,4)



Number of possible tradeoff algorithms
The number of ways to merge k vectors is given by the Bell number B(k)

Number of vectors k 3 5 10 16 20 · · ·
Bell number B(k) 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

,→ The total numbers of algorithms is given by B(m) ·B(p)

(m,p) (5,5) (6,6) (10,10) (16,16) (25,25) (64,64) · · ·
Number of algorithms 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·
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A novel tradeoff algorithm for code synthesis for matrix multiplication
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A novel tradeoff algorithm for code synthesis for matrix multiplication
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

Number of possible tradeoff algorithms
The number of ways to merge k vectors is given by the Bell number B(k)

Number of vectors k 3 5 10 16 20 · · ·
Bell number B(k) 5 52 115975≈ 217 10480142147≈ 233 51724158235372≈ 246 · · ·

,→ The total numbers of algorithms is given by B(m) ·B(p)

(m,p) (5,5) (6,6) (10,10) (16,16) (25,25) (64,64) · · ·
Number of algorithms 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433 · · ·
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Distances
The Hausdorff distance dH

dH : Fix ×Fix →R+

dH (I1, I2)=max
{∣∣∣I1 − I2

∣∣∣ ,
∣∣I1 − I2

∣∣}
Fixed-point distance

dF : Fix ×Fix →N

dF (I1, I2)=
∣∣IntegerPart(I1)− IntegerPart(I2)

∣∣
Width criterion

dW : Fix ×Fix →R+

dW (I1, I2)=
(
I1 ∪ I2 − I1 ∪ I2

)

Example

Let A= [−3,1] and B = [2,4] with A in the fixed-point format Q3,29 and B in Q4,28, we have:

dH(A,B)= 5 dF (A,B)= |3−4| = 1 dW (A,B)= 7

Ra1 a1 b1 b1
0 dH (A,B)

dW (A,B)
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Closest pair strategy
Input:

Two matrices A ∈ Fixm×p and B ∈ Fixp×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,Am−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
3: while C1 is satisfied do
4: (uA ,vA),dA ← findClosestPair(SA ,d)
5: (uB ,vB),dB ← findClosestPair(SB ,d)
6: if dA ≤ dB then
7: remove(uA ,vA ,SA)
8: insert(uA ∪vA ,SA)
9: else

10: remove(uB ,vB ,SB)
11: insert(uB ∪vB ,SB)
12: end if
13: for (Ai ,Bj ) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj )
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

Accurate algorithm

25 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Closest pair strategy
Input:

Two matrices A ∈ Fixm×p and B ∈ Fixp×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
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2: SB ← {B:,0 , . . . ,B:,n−1}
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12: end if
13: for (Ai ,Bj ) ∈SA ×SB do
14: DPSynthesis(Ai ,Bj )
15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

20 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Closest pair strategy
Input:

Two matrices A ∈ Fixm×p and B ∈ Fixp×n

An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
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or no code otherwise

Algorithm:
1: SA ← {A0,: , . . . ,Am−1,:}
2: SB ← {B:,0 , . . . ,B:,n−1}
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13: for (Ai ,Bj ) ∈SA ×SB do
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15: end for
16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

16 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied
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or no code otherwise
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16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

12 DPcodes

C1 is satisfied

 Revert the last merging step and
check if C2 is satisfied
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Closest pair strategy
Input:
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An accuracy bound C1 (ex. the average error bound is < ε)
A code size bound C2
A metric d

Output:
Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:
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14: DPSynthesis(Ai ,Bj )
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16: end while
17: /* Revert the last merging step, and check the bound C2. */

A:0

A:1

A:2

A:3

A:4

B:0

B:1

B:2

B:3

B:4

9 DPcodes

C1 is no longer satisfied

 Revert the last merging step and
check if C2 is satisfied
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Benchmarks generation methodology
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Efficiency of the distance-based heuristic

Example of 6×6 matrix multiplication
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A novel tradeoff algorithm for code synthesis for matrix multiplication

Impact of the metric on the tradeoff strategy
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Toward code synthesis for matrix inversion

Outline of the talk

1. Our fixed-point arithmetic model

2. A novel tradeoff algorithm for code synthesis for matrix multiplication

3. Toward code synthesis for matrix inversion

4. Concluding remarks and future work
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Toward code synthesis for matrix inversion

Similar works

Previous works solving a similar problem
Frantz et al. (2007): Design and Implementation of Numerical Linear Algebra
Algorithms on Fixed Point DSPs.

Irturk et al. (2010): GUSTO: An Automatic Generation and Optimization Tool for
Matrix Inversion Architectures.

Recurring problems with existing works
The tools are not available.

Unclear arithmetic models.

Sometimes, only toys examples are treated.

Code generation is slow since it is based on simulation.

Numerical accuracy is estimated a posteriori by comparing to floating-point.
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Toward code synthesis for matrix inversion

Statement of the problems:
triangular matrix inversion and Cholesky decomposition

Inputs
A lower triangular matrix B of
interval fixed-point variables

B ∈ Fixn×n

Output
Fixed-point code (C, VHDL, ...) that
evaluates the inverse

N ′ = (B′)−1, where B′ ∈B

Accuracy certificate (verifiable by a
formal proof checker)

Inputs
A matrix M of interval fixed-point
variables

M ∈ Fixn×n

Output
Fixed-point code (C, VHDL, ...) that
computes the decomposition

B′ = chol(M ′), where M ′ ∈M and M ′ is positive definite

Accuracy certificate (verifiable by a
formal proof checker)
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Toward code synthesis for matrix inversion

Missing basic blocks

Triangular matrix inversion

ni ,j =


1

bi ,i
if i = j

−ci ,j

bi ,i
if i 6= j

where ci ,j =
i−1∑
k=j

bi ,k ·nk ,j

Cholesky decomposition

bi ,j =


p

ci ,i if i = j

ci ,j

bj ,j
if i 6= j

with ci ,j =mi ,j −
j−1∑
k=0

bi ,k ·bj ,k

Figure: Dependencies of the coefficient b4,2 in the inversion and decomposition of a 6×6 matrix.
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Toward code synthesis for matrix inversion

The dilemma of the division output format
Consider two fixed-point variables in the formats Q2.6 and Q1.7:

x0 x1 x2 x3 x4 x5 x6 x7 y0 y1 y2 y3 y4 y5 y6 y7

Multiplication

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10z11z12z13z14z15

Doubling the word-length.

Err× ∈ [0,0].

Division
z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10z11z12z13z14z15

Doubling the word-length.

Err/ ∈ [−2−7,2−7]

How to decide the output format of division?

Keeping a large integer part

3 Prevents overflow

7 Leads to a loss of precision and
loose error bounds

Keeping a tight integer part

3 Leads to more precision and
sharper error bounds

7 May cause overflow
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Toward code synthesis for matrix inversion

A propagation rule and an implementation of division

/

v1 v2

Val(v)= Val(v1)

Val(v2)
−Err/

Err(v)= Val(v2) ·Err(v1)−Val(v1) ·Err(v2)

Val(v2) · (Val(v2)+Err(v2))
+Err/

Given v1 =V1 ·2−f1 and v2 =V2 ·2−f2 , how to determine Err/?

Naive approach
Compute
v1

v2
= V1 ·2−f1

V2 ·2−f2
= V1

V2
·2−(f1−f2)

Err/ = [−2−(f1−f2),2−(f1−f2)]

Accurate approach

Compute
v1

v2
= V1 ·2η

V2
·2−(f1−f2+η)

Err/ = [−2−(f1−f2+η),2−(f1−f2+η)]
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Toward code synthesis for matrix inversion

Comparison of the two implementations of division
Consider x a 4-bit fixed-point variable in the format Q1.3 with X = (0101)2 = (5)10.

Ï The value of x is 0.625

Consider y a 4-bit fixed-point variable in the format Q2.2 with X = (0110)2 = (6)10.
Ï The value of y is 1.5

The mathematical value for
x
y

is given by
x
y
= 0.41666 . . .

Naive approach

0 1 0 1 X = 5 x = 0.625

0 1 1 0 Y = 6 y = 1.5
X/Y

0 0 0 0 Z = 0 z = 0

Err/ ∈ [−2−1,2−1]= [−0.5,0.5]

Accurate approach

0 1 0 1 X = 5 x = 0.625

0 0 1 0 1 0 0 0 X ′ = 40 x ′ = 0.625

0 1 1 0 Y = 6 y = 1.5
X/Y

0 1 1 0 Z = 6 z = 0.375

Err/ ∈ [−2−4,2−4]= [−0.0625,0.0625]
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Toward code synthesis for matrix inversion

Overview of synthesis process

Two main difficulties of the synthesis process

1. compared to matrix multiplication: the format of a given matrix coefficient depends
directly upon the ones of previous computed coefficients

2. the parameter η must be chosen at synthesis-time

Instead of choosing the parameter η:

Ï we fix the expected output of the operator,

Ï and we decide the parameter η accordingly.
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Toward code synthesis for matrix inversion

Impact of the output format of division
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(a) Cholesky 5×5.
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(b) Triangular 10×10.

Figure: Maximum error of Cholesky decomposition and triangular inverse with various functions
used to determine the output formats of division.

We tested with multiple means to set the format of output of division

f1(i1, i2)= t , f2(i1, i2)=min(i1, i2)+ t ,

f3(i1, i2)=max(i1, i2)+ t , and f4(i1, i2)= b(i1 + i2)/2c+ t ,

where t ∈Z is a user defined parameter, and i1 and i2 are the formats of the operands.A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Code synthesis for linear algebra basic blocks in fixed-point arithmetic 30/36



Toward code synthesis for matrix inversion

How fast is generating triangular matrix inversion codes?
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Figure: Comparison of the error bounds and experimental errors together with generation time,
for the inversion of triangular matrices of size 4 to 40.
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Toward code synthesis for matrix inversion

Decomposing some well known matrices
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Figure: Maximum errors measured when computing the Cholesky decomposition of various
kinds of matrices for sizes varying from 4 to 14.
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Toward code synthesis for matrix inversion

Decomposing some well known matrices
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Figure: Maximum errors of the Cholesky decomposition of Hilbert matrix for sizes varying from 4
to 8.
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Concluding remarks and future work

Outline of the talk

1. Our fixed-point arithmetic model

2. A novel tradeoff algorithm for code synthesis for matrix multiplication

3. Toward code synthesis for matrix inversion

4. Concluding remarks and future work
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Concluding remarks and future work

The FPLA tool

FPLA: Fixed-Point Linear Algebra

Automated code synthesis for linear algebra basic block
→ matrix multiplication,

→ triangular matrix inversion,

→ and Cholesky decomposition

More information on FPLA are available on its webpage

http://perso.univ-perp.fr/mohamedamine.najahi/fpla/

Let us now have a try on the FPLA tool
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Concluding remarks and future work

Conclusion remarks and future work

We are close to our initial goal of fixed-point code synthesis

for matrix inversion.

Work done so far

New algorithm to synthesize codes that satisfy accuracy/code size tradeoffs for
matrix multiplication

Ï matrices of size up to 80 in few minutes

Approach for the synthesis of triangular matrix inversion and Cholesky
decomposition

Ï matrices of size up to 40 in few minutes

These algorithms are implemented in the FPLA tool
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Concluding remarks and future work

Conclusion remarks and future work

We are close to our initial goal of fixed-point code synthesis

for matrix inversion.

Future work is twofold

Further works on the arithmetic model:
Ï understand better the role of the output format of division
Ï derive sharper error bounds for square root

Further works on the flow for matrix inversion:
Ï integrate all the blocks to automate code generation for matrix inversion
Ï handle alternative flows, based on LU or QR decomposition
Ï find trade-offs between code size and accuracy
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